Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T07:11:47.184Z Has data issue: false hasContentIssue false

Measure convergent sequences in Lebesgue spaces and Fatou's lemma

Published online by Cambridge University Press:  17 April 2009

Heinz-Albrecht Klei
Affiliation:
Université de Reims, Département de Mathématiques, Moulin de la Housse, B P 347, 51062 Reims Cedex, France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (fn) be a sequence of positive P-integrable functions such that (∫ fndP)n converges. We prove that (fn) converges in measure to if and only if equality holds in the generalised Fatou's lemma. Let f be an integrable function such that (∥fnf1)n converges. We present in terms of the modulus of uniform integrability of (fn) necessary and sufficient conditions for (fn) to converge in measure to f.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

REFERENCES

[1]Balder, E.J., ‘On equivalence of strong and weak convergence in L 1-spaces under extreme point conditions’, Israel J. Math. 75 (1991), 2147.CrossRefGoogle Scholar
[2]Brezis, H. and Lieb, E., ‘A relation between pointwise convergence of functions and convergence of functional’, Proc. Amer. Math. Soc. 88 (1983), 486490.CrossRefGoogle Scholar
[3]Dunford, N. and Schwartz, J.T., Linear operators, Part I (Interscience Publishers, New York, 1962).Google Scholar
[4]Klei, H.-A., ‘Convergences faible, en measure et au sens de Cesaro dans L 1(R)’, C.R. Acad. Sci. Paris 315, Série I (1992), 912.Google Scholar
[5]Klei, H.-A., ‘Convergence and extraction of bounded sequences in L 1(ℝ)’, J. Math. Anal. Appl. (to appear).Google Scholar
[6]Klei, H.-A. and Miyara, M., ‘Une extension du lemme de Fatou’, Bull. Sci. Math. (2e série) 115 (1991), 211222.Google Scholar
[7]Rosenthal, H.P., ‘Sous-espaces de L 1’, (Lectures held at the University Paris VI, 1979).Google Scholar