No CrossRef data available.
Article contents
Maximal perfect spaces
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let (X, T) be a topological space (we assume T1. throughout) where every point is a limit point. The purpose of this note is to present an internal construction of a maximal perfect topology on (X, T). The existence of a maximal connected Hausdorff space has not been demonstrated. However, this construction of a maximal perfect topology is useful in constructing connected Hausdorff spaces which cannot be embedded in a maximal connected Hausdorff space.
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 7 , Issue 3 , December 1972 , pp. 429 - 436
- Copyright
- Copyright © Australian Mathematical Society 1972
References
[1]Baggs, Ivan, “A connected Hausdorff space vhich is not contained in a maximal connected space”, (to appear).Google Scholar
[2]Thomas, J. Pelham, “Maximal connected topologies”, J. Austral. Math. Soc. 8 (1968), 700–705.CrossRefGoogle Scholar