Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T19:03:40.396Z Has data issue: false hasContentIssue false

Legendre polynomials in irrationality proofs

Published online by Cambridge University Press:  17 April 2009

F. Beukers
Affiliation:
Mathematisc Institut, Rijksuniversiteit Leiden, Wassenarseweg 80, Postbus 9512, 2300 RA Leiden, Netherlands.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a simple trick involving Legendre polynomials readily yields the irrationality of ea, , π2, and of the zeros of Bessel functions of integer order. Generalisation of this idea yields the irrationality of ζ(3).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

[1]Alladi, K. and Robinson, M.L., “On certain irrational values of the logarithm”, Number theory, Carbondale 1979, 19 (Proc. Southern Illinois Number Theory Conference, Carbondale, 1979. Lecture Notes in Mathematics, 751. Springer-Verlag, Berlin, Heidelberg, New York, 1979).Google Scholar
[2]Beukers, F., “A note on the irrationality of ζ(2) and ζ(3)“, Bull. London Math. Soc. 11 (1979), 268272.Google Scholar
[3]Bundschuh, Peter, “IrrationalitätsmaΒe für e a, a ≠ 0 rational oder Liouville-Zahl”, Math. Ann. 192 (1971), 229242.Google Scholar
[4]Choodnovsky, Gregory V., “Approximations rationnelles des logarithmes de nombres rationnels”, C.R. Acad. Sci. Paris Ser. A 288 (1979), 607609.Google Scholar
[5]Erdelyi, Arthur, Magnus, Wilhelm, Oberhettinger, Fritz, Tricomi, Francesco G., Higher Transcendental Functions, Volume II (McGraw-Hill, New York, Toronto, London, 1953).Google Scholar
[6]Gerritzen, L., “Ein p-adischer Beweis für die Irrationalität der Nullstellen von Besselfunktionen”, Math. Ann. 266 (1977), 253255.Google Scholar
[7]Lamberti, Iohannis Henrici, “Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques”, Opera Mathematica, Volumen Secundum, 112159 (Orell FüΒli Verlag, Zürich, 1948).Google Scholar
[8]Legendre, A.M., “Les polygones réguliers et la mesure du cercle”, Élements de géométrie, Livre IV (Librairie de Firmin Didot Fréres, Paris, 1850).Google Scholar
[9]Niven, Ivan, “A simple proof that π is irrational”, Bull. Amer. Math. Soc. 53 (1947), 509.CrossRefGoogle Scholar
[10]Siegel, Carl Ludwig, Transcendental numbers (Annals of Mathematics Studies, 16. Princeton University Press, Princeton, 1949).Google Scholar
[11]Szegö, Gabor, Orthogonal polynomials (Amer. Math. Soc. Colloquium Publications, 23. American Mathematical Society, New York, 1939. Reprinted, 1959).Google Scholar