No CrossRef data available.
Article contents
ISOLATED SUBGROUPS OF FINITE p-GROUPS
Part of:
Representation theory of groups
Published online by Cambridge University Press: 01 October 2021
Abstract
We say that a subgroup H is isolated in a group G if for each $x\in G$ either $x\in H$ or $\langle x\rangle \cap H={1}$ . We determine the structure of finite p-groups with isolated minimal nonabelian subgroups and finite p-groups with an isolated metacyclic subgroup.
MSC classification
Primary:
20D15: Nilpotent groups, $p$-groups
- Type
- Research Article
- Information
- Copyright
- © 2021 Australian Mathematical Publishing Association Inc.
Footnotes
This work was supported by NSFC (Nos. 11901367 and 11971280).
References
An, L. J., Li, L. L., Qu, H. P. and Zhang, Q. H., ‘Finite
$p$
-groups with a minimal nonabelian subgroup of index
$p$
(II)’, Sci. China Ser. A 57 (2014), 737–753.CrossRefGoogle Scholar
Berkovich, Y., Groups of Prime Power Order I (Walter de Gruyter, Berlin–New York, 2008).Google Scholar
Hogan, G. T. and Kappe, W. P., ‘On the
${H}_p$
-problem for finite
$p$
-groups’, Proc. Amer. Math. Soc. 20 (1969), 450–454.Google Scholar
Janko, Z., ‘Finite
$p$
-groups with some isolated subgroups’, J. Algebra 465 (2016), 41–61.CrossRefGoogle Scholar
Qu, H. P., Yang, S. S., Xu, M. Y. and An, L. J., ‘Finite
$p$
-groups with a minimal nonabelian subgroup of index
$p$
(I)’, J. Algebra 358 (2012), 178–188.CrossRefGoogle Scholar
Xu, M. Y., An, L. J. and Zhang, Q. H., ‘Finite
$p$
-groups all of whose nonabelian proper subgroups are generated by two elements’, J. Algebra 319 (2008), 3603–3620.Google Scholar
Zhang, Q. H., ‘Finite
$p$
-groups all of whose minimal nonabelian subgroups are non-metacyclic of order
${p}^3$
’, Acta Math. Sin. (Engl. Ser.) 35 (2019), 1179–1189.CrossRefGoogle Scholar