Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T07:23:48.589Z Has data issue: false hasContentIssue false

A generalisation of Turán's main theorems to binomials and logarithms

Published online by Cambridge University Press:  17 April 2009

A. J. van der Poorten
Affiliation:
University of New South Wales, Kensington, New South Wales.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Main Theorems of P. Turán's book Eine neue Methode in der Analysis und deren Anwendungen concern only sums of powers but are easily generalised to exponential sums with polynomial coefficients. It does not appear to have been observed however, that similar such theorems with analogous implication as to value distribution and arithmetical behaviour can be formulated for a wider class of functions. We prove a result for functions of the form subsuming identities which Mahler has shown to contain transcendence results on the exponential and logarithmic functions and diophantine results of the Thue-Siegel-Roth type.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1970

References

[1]Baker, A., “A note on the Padé table”, Nederl. Akad. Wetensch. Proc. Ser. A 69 (1966), 596601.Google Scholar
[2]Danes, S. and Turán, P., “On the distribution of values of a class of entire functions I, II”, Publ. Math. Debrecen 11 (1964), 257272.Google Scholar
[3]Gelfond, A.O., Transcendental and algebraic numbers (Dover Publications, New York, 1960).Google Scholar
[4]Mahler, Kurt, “Ein Beweis des Thue-Siegelschen Satzes über die Approximation algebraischer Zahlen für binomische Gleichungen”, Math. Ann. 105 (1931), 267276.CrossRefGoogle Scholar
[5]Mahler, K., “On the approximation of logarithms of algebraic numbers”, Philos. Trans. Roy. Soc. London Ser. A 245 (1953), 371398.Google Scholar
[6]Mahler, K., “On a class of entire functions”, Acta Math. Acad. Sci. Hungar. 18 (1967), 8396.Google Scholar
[7]Nörlund, N.–E., Leçons sur les séries d'interpolation (Gauthier-Villars, Paris, 1926).Google Scholar
[8]Turán, Paul, Eine neue Methode in der Analysis und deren Anwendungen (Akadémiai Kiadó, Budapest, 1953).Google Scholar
[9]van der Poorten, A.J., “Generalisations of Turán's main theorems on lower bounds for sums of powers”, Bull. Austral. Math. Soc. 2 (1970), 1537.CrossRefGoogle Scholar
[10]van der Poorten, A.J., “On sums of exponential functions I”, (to appear).Google Scholar
[11]van der Poorten, A.J., “On sums of exponential functions II”, (to appear).Google Scholar