Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T09:02:25.634Z Has data issue: false hasContentIssue false

A generalisation of Ahlfors-Schwarz lemma to Riemannian geometry

Published online by Cambridge University Press:  17 April 2009

Kok Seng Chua
Affiliation:
14 Cornwall Gardens, Singapore1026
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our main result shows that a conformal mapping of hyperbolic n-space into another Riemannian manifold with scalar curvature bounded above by −n(n − 1) is necessarily distance decreasing. This is a generalisation of Ahlfors' version of the Schwarz-Pick lemma to Riemannian Geometry.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Ahlfors, L.V., ‘An extension of Schwarz's lemma’, Trans. Amer. Math. Soc. 43 (1938), 359364.Google Scholar
[2]Ahlfors, L.V., Conformal invariants: Topics in geometric function theory (McGraw-Hill, New York, 1973).Google Scholar
[3]Chern, S.S., ‘On holomorphic mappings of Hermitian manifolds of the same dimension’, in Proceedings Symposium Pure Mathematics 11 (Amer. Math. Soc, Providence, R.I., 1968), pp. 157170.Google Scholar
[4]Grauert, H. and Reckziegel, H., ‘Hermitsche Metriken und normale Familien holomorpher Abbildungen’, Math. Z. 89 (1965), 108125.CrossRefGoogle Scholar
[5]Minda, D. and Schober, G., ‘Another elementary approach to the theorems of Landau, Montel, Picard and Schottky’, Complex Variables Theory Appl. 2 (1983), 157164.Google Scholar
[6]Yau, S.T., ‘A general Schwarz lemma for Kahler manifolds’, Amer. J. Math. 100 (1978), 197203.CrossRefGoogle Scholar
[7]Yano, K. and Obata, M., ‘Conformal changes of Riemannian metrics’, J. Differential Geom. 4 (1970), 5372.CrossRefGoogle Scholar