Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T02:46:21.871Z Has data issue: false hasContentIssue false

The gap between subspaces and perturbation of non-semi-Fredholm operators

Published online by Cambridge University Press:  17 April 2009

Jose A. Alvarez
Affiliation:
Departamento de MatematicasUniversidad de CantabriaFacultad de Ciencias 39071 Santander, Spain
Teresa Alvarez
Affiliation:
Departamento de MatematicasUniversidad de CantabriaFacultad de Ciencias 39071 Santander, Spain
Manuel Gonzalez
Affiliation:
Departamento de MatematicasUniversidad de OviedoFacultad de Ciencias 33071 Oviedo, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study a concept of stability under the gap of isomorphic properties of Banach spaces and apply it to obtain some results of stability under compact or small norm perturbation for non-semi-Fredholm operators with closed range.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Bouldin, R., ‘The instability of non-semi-Fredholm operators under compact perturbations’, J. Math. Anal. Appl. 87 (1982), 632638.CrossRefGoogle Scholar
[2]Brown, A.L., ‘On the space of subspaces of a Banach space’, J. London Math. Soc. 5 (1972), 6773.CrossRefGoogle Scholar
[3]Civin, P. and Yood, B., ‘Quasi-reflexive Banach spaces’, Proc. Amer. Math. Soc. 8 (1957), 906911.CrossRefGoogle Scholar
[4]Giesy, D.P., ‘On a convexity condition in normed linear spaces’, Trans. Amer. Math. Soc. 125 (1966), 114146.CrossRefGoogle Scholar
[5]Goldberg, S., Unbounded linear operators (McGraw-Hill, New York, 1966).Google Scholar
[6]Goldman, M.A., ‘On the stability of the property of normal solvability of linear equations’, (Russian), Dokl. Akad. Nauk. SSSR 100 (1955), 201204.Google Scholar
[7]Gonzalez, M. and Onieva, V.M., ‘On the instability of non-semi-Fredholm operators under compact perturbations’, J. Math. Anal. Appl. 114 (1986), 450457.CrossRefGoogle Scholar
[8]James, R.C., ‘Uniformly non square Banach spaces’, Ann. of Math. 80 (1964), 542550.CrossRefGoogle Scholar
[9]James, R.C., ‘Some self-dual properties of normed linear spaces’, Ann. of Math. Stud. 69 (1972), 159175.Google Scholar
[10]Janz, R., ‘Perturbation of Banach spaces’, Preprint Universität Konstaz (1987).Google Scholar
[11]Kalton, N. and Peck, N.T., ‘Twisted sums of sequence spaces and the three space problem’, Trans. Amer. Math. Soc. 205 (1979), 130.CrossRefGoogle Scholar
[12]Kato, T., Perturbation Theory for linear operators (Springer-Verlag, Berlin, Heidelberg, New York, 1966).Google Scholar
[13]Labuschagne, L.E., ‘On the instability of non-semi-Fredholm closed operators under compact perturbations with applications to ordinary differential operators’, Proc. Edinburgh Math. Soc. 109A (1988), 97108.CrossRefGoogle Scholar
[14]Markus, A.S., ‘On some properties of linear operators connected with the notion of gap’, (Russian), Kishinev Gos. Univ. Uchen. Zap. 39 (1959), 265272.Google Scholar
[15]Ostrowski, M.I., ‘On properties of the opening and related closeness characterizations of Banach spaces’, Amer. Math. Soc. Transl. 136 (1987), 109119.Google Scholar
[16]Valdivia, M., ‘On a class of Banach spaces’, Studia Math. 60 (1977), 1113.CrossRefGoogle Scholar
[17]Valdivia, M., ‘Banach spaces X with X** separable’, Israel J. Math. 59 (1987), 107111.CrossRefGoogle Scholar