Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T13:37:51.214Z Has data issue: false hasContentIssue false

EXISTENCE OF S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS FOR ABSTRACT NEUTRAL EQUATIONS

Published online by Cambridge University Press:  01 December 2008

HERNÁN R. HENRÍQUEZ
Affiliation:
Departamento de Matemática, Universidad de Santiago, USACH, Casilla 307, Correo-2, Santiago, Chile (email: [email protected])
MICHELLE PIERRI*
Affiliation:
Departamento de Matemática, I.C.M.C. Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos SP, Brazil (email: [email protected])
PLÁCIDO TÁBOAS
Affiliation:
Departamento de Matemática Aplicada e Estatística, I.C.M.C. Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos SP, Brazil (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A bounded continuous function is said to be S-asymptotically ω-periodic if . This paper is devoted to study the existence and qualitative properties of S-asymptotically ω-periodic mild solutions for some classes of abstract neutral functional differential equations with infinite delay. Furthermore, applications to partial differential equations are given.

Type
Research Article
Copyright
Copyright © 2009 Australian Mathematical Society

References

[1]Adimy, M. and Ezzinbi, K., ‘A class of linear partial neutral functional-differential equations with nondense domain’, J. Differential Equations 147(2) (1998), 285332.CrossRefGoogle Scholar
[2]Ananjevskii, I. M. and Kolmanovskii, V. B., ‘Stabilization of some nonlinear hereditary mechanical systems’, Nonlinear Anal. 15(2) (1990), 101114.CrossRefGoogle Scholar
[3]Castillo, G. and Henríquez, H. R., ‘Almost-periodic solutions for a second order abstract Cauchy problem’, Acta Math. Hungar. 106(1–2) (2005), 2739.CrossRefGoogle Scholar
[4]Clément, Ph. and Nohel, J. A., ‘Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels’, SIAM J. Math. Anal. 12(4) (1981), 514535.CrossRefGoogle Scholar
[5]Diagana, T., Henríquez, H. R. and Hernández, E., ‘Almost automorphic mild solutions to some partial neutral functional-differential equations and applications’, Nonlinear Anal. 69(5–6) (2008), 14851493.Google Scholar
[6]Grimmer, R. C., ‘Asymptotically almost periodic solutions of differential equations’, SIAM J. Appl. Math. 17 (1969), 109115.Google Scholar
[7]Gurtin, M. E. and Pipkin, A. C., ‘A general theory of heat conduction with finite wave speed’, Arch. Ration. Mech. Anal. 31 (1968), 113126.Google Scholar
[8]Haiyin, G., Wang, K., Fengying, W. and Xiaohua, D., ‘Massera-type theorem and asymptotically periodic logistic equations’, Nonlinear Anal. Real World Appl. 7 (2006), 12681283.Google Scholar
[9]Hale, J. K., ‘Partial neutral functional-differential equations’, Rev. Roumaine Math. Pures Appl. 39(4) (1994), 339344.Google Scholar
[10]Henríquez, H. R., ‘Approximation of abstract functional differential equations with unbounded delay’, Indian J. Pure Appl. Math. 27(4) (1996), 357386.Google Scholar
[11]Henríquez, H. R. and Vásquez, C. H., ‘Almost periodic solutions of abstract retarded functional differential equations with unbounded delay’, Acta Appl. Math. 57(2) (1999), 105132.CrossRefGoogle Scholar
[12]Hernández, E., ‘Existence results for partial neutral integrodifferential equations with unbounded delay’, J. Math. Anal. Appl. 292(1) (2004), 194210.CrossRefGoogle Scholar
[13]Hernández, E., A comment on the papers ‘Controllability results for functional semilinear differential inclusions in Fréchet spaces’, Nonlinear Anal. 61(3) (2005), 405–423 and ‘Controllability of impulsive neutral functional differential inclusions with infinite delay’ Nonlinear Anal. 60(8) (2005), 1533–1552; Nonlinear Anal. 66(10) (2007), 2243–2245.Google Scholar
[14]Hernández, E. and Diagana, T., ‘Existence and uniqueness of pseudo almost periodic solutions to some abstract partial neutral functional differential equations and applications’, J. Math. Anal. Appl. 327(2) (2007), 776791.Google Scholar
[15]Hernández, E. and Henríquez, H. R., ‘Existence results for partial neutral functional differential equations with unbounded delay’, J. Math. Anal. Appl. 221(2) (1998), 452475.Google Scholar
[16]Hernández, E. and Henríquez, H. R., ‘Existence of periodic solutions of partial neutral functional differential equations with unbounded delay’, J. Math. Anal. Appl. 221(2) (1998), 499522.Google Scholar
[17]Hernández, E. and Pelicer, M., ‘Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations’, Appl. Math. Lett. 18(11) (2005), 12651272.Google Scholar
[18]Hino, Y. and Murakami, S., ‘Limiting equations and some stability properties for asymptotically almost periodic functional differential equations with infinite delay’, Tôhoku Math. J. (2) 54(2) (2002), 239257.CrossRefGoogle Scholar
[19]Hino, Y., Murakami, S. and Naito, T., Functional-differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473 (Springer, Berlin, 1991).CrossRefGoogle Scholar
[20]Hino, Y., Naito, T., Minh, N. V. and Shin, J. S., Almost Periodic Solutions of Differential Equations in Banach Spaces (Taylor and Francis, London, 2002).Google Scholar
[21]Kwon, W. H., Lee, G. W. and Kim, S. W., ‘Performance improvement using time delays in multivariable controller design’, Internat. J. Control 52(6) (1990), 14551473.CrossRefGoogle Scholar
[22]Liang, B., ‘Zhong Chao Asymptotically periodic solutions of a class of second order nonlinear differential equations’, Proc. Amer. Math. Soc. 99(4) (1987), 693699.Google Scholar
[23]Lunardi, A., ‘Alessandra On the linear heat equation with fading memory’, SIAM J. Math. Anal. 21(5) (1990), 12131224.CrossRefGoogle Scholar
[24]Lunardi, A., ‘Analytic semigroups and optimal regularity in parabolic problems’, in: Progress in Nonlinear Differential Equations and Their Applications, Vol. 16 (Birkhäuser, Basel, 1995).Google Scholar
[25]Minh Man, N. and Van Minh, N., ‘On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations’, Commun. Pure Appl. Anal. 3(2) (2004), 291300.CrossRefGoogle Scholar
[26]Murakami, S., Naito, T. and Nguyen, M., ‘Van Massera’s theorem for almost periodic solutions of functional differential equations’, J. Math. Soc. Japan 56(1) (2004), 247268.Google Scholar
[27]Nunziato, J. W., ‘On heat conduction in materials with memory’, Quart. Appl. Math. 29 (1971), 187204.CrossRefGoogle Scholar
[28]Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, New York, 1983).Google Scholar
[29]Sforza, D., ‘Existence in the large for a semilinear integrodifferential equation with infinite delay’, J. Differential Equations 120(2) (1995), 289303.Google Scholar
[30]Utz, W. R., ‘Waltman, Paul asymptotic almost periodicity of solutions of a system of differential equations’, Proc. Amer. Math. Soc. 18 (1967), 597601.Google Scholar
[31]Wong, J. S. W. and Burton, T. A., ‘Some properties of solutions of u′′(t)+a(t)f(u)g(u′)=0 II’, Monatsh. Math. 69 (1965), 368374.Google Scholar
[32]Wu, J., Theory and Applications of Partial Functional-differential Equations, Applied Mathematical Sciences, 119 (Springer, New York, 1996).Google Scholar
[33]Wu, J. and Xia, H., ‘Self-sustained oscillations in a ring array of coupled lossless transmission lines’, J. Differential Equations 124(1) (1996), 247278.Google Scholar
[34]Wu, J. and Xia, H., ‘Rotating waves in neutral partial functional-differential equations’, J. Dynam. Differential Equations 11(2) (1999), 209238.CrossRefGoogle Scholar
[35]Yuan, R., ‘Existence of almost periodic solutions of neutral functional-differential equations via Liapunov–Razumikhin function’, Z. Angew. Math. Phys. 49(1) (1998), 113136.Google Scholar