Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:06:14.139Z Has data issue: false hasContentIssue false

Eigenvalue approximation methods for quantum lattice Hamiltonians

Published online by Cambridge University Press:  17 April 2009

P.G. Hornby
Affiliation:
School of Mathematics, University of New South Wales, PO Box 1, Kensington, New South Wales 2055, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD theses
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Domb, C., Green, M.S. and Lebowitz, J.L., Phase transitions and critical phenomena, Vols. 1–8 (Academic Press, New York, London, 1972/1983).Google Scholar
[2]Drell, S.D., Weinstein, M. and Yankielowicz, S., “Quantum field theories on a lattice: variational methods for arbitrary coupling strengths and the Ising model in a transverse magnetic field”, Phys. Rev. D 16 (1977), 17691781.CrossRefGoogle Scholar
[3]Fisher, M.E. and Barber, M.N., “Scaling theory for finite-size effects in the critical region”, Phys. Rev. Lett. 28 (1972), 15161519.CrossRefGoogle Scholar
[4]Heys, D.W. and Stump, D.R., “Application of the Green's function Monte Carlo method to the Haniltonian XY model”, Phys. Rev. D 29 (1984), 17841794.CrossRefGoogle Scholar
[5]Horn, D. and Weinstein, M., “Gauge-invariant variational methods for Hamiltonian lattice gauge theories”, Phys. Rev. D 25 (1982), 33313335.CrossRefGoogle Scholar
[6]Pearson, R.B., “Application of Jastrow wave functions to quantum lattice spin theories”, Phys. Rev. A 18 (1978), 26552658.CrossRefGoogle Scholar
[7]Roomanay, H.H. and Wyld, H.W., “Finite-lattice approach to the 0(2) and 0(3) models in 1 + 1 dimensions and the (2+1) dimensional Ising model”, Phys. Rev. D 21 (1980), 33413349.CrossRefGoogle Scholar
[8]Singh, S.R., “Converging lower bounds to atomic binding energies”, J. Math. Phys. 22 (1981), 893896.CrossRefGoogle Scholar