Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T05:34:57.238Z Has data issue: false hasContentIssue false

Dimensions of spaces of Siegel modular forms of low weight in degree four

Published online by Cambridge University Press:  17 April 2009

Cris Poor
Affiliation:
Department of Mathematics, Fordham University, Bronx NY 10458, United States of America e-mail: [email protected]
David S. Yuen
Affiliation:
Math/Computer Science Department, Lake Forest College, 555 N. Sheridan Rd, Lake Forest IL 60045, United States of America e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We calculate the dimensions of using Erokhin's work on Niemeier lattices and geometric methods involving the hyperelliptic locus.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

REFERENCES

[1]Böcherer, S., ‘Über die Fourier–Jacobi–Entwicklung Siegelscher Eisensteinreihen’, Math Z. 183 (1983), 2146.Google Scholar
[2]Conway, J.H., and Sloane, N.J.A., Sphere packings, lattices and groups, Grundlehren Math. Wiss. 290 (Springer-Verlag, Berlin, Heidelberg, New York, 1993).Google Scholar
[3]Erokhin, V. A., ‘Theta series of even unimodular 24-dimensional lattices’, LOMI 86 (1979), 8293.Google Scholar
[4]Erokhin, V. A., ‘Theta series of even unimodular lattices’, LOMI 199 (1981), 5970.Google Scholar
[5]Fay, J., Theta Functions on Riemann Surfaces, Springer Lecture Notes 352 (Springer-Verlag, Berlin, 1973).CrossRefGoogle Scholar
[6]Freitag, E., Siegelsche Modulfunktionen, Grundlehren der mathematische Wissenschaften 254 (Springer Verlag, Berlin, 1983).Google Scholar
[7]Freitag, E., ‘Stabile Modulformen’, Math. Ann. 230 (1977), 197211.CrossRefGoogle Scholar
[8]Freitag, E., ‘Die Irreduzibilität der Schottkyrelation (Bemerkung zu einen Satz von J. Igusa)’, Arch. Math. 40 (1983), 255259.Google Scholar
[9]Igusa, J. I., ‘Modular forms and projective invariants’, Amer. J. Math. 89 (1967), 817855.Google Scholar
[10]Igusa, J. I., ‘Schottky's invariant and quadratic forms’, in Christoffel Symposium (Birkhäuser Verlag, 1981).Google Scholar
[11]Igusa, J. I., ‘On the irreducibility of Schottky's divisor’, Tokyo Imperial University Faculty of Science Journal Section IA 28 (1981).Google Scholar
[12]Klingen, H., Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced Mathematics 20 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[13]Tsuhima, R., ‘On dimension Formula for Siegel Modular Forms’, Automorphic Forms and Geometry of Arithmetic Varieties, Advanced Studies in Pure Mathematics 15 (Cambridge University Press, Cambridge, 1989), pp. 4164.Google Scholar
[14]Tsuyumine, S., ‘On Siegel modular forms of degree three’, Amer. J. Math. 108 (1986), 755862, 1001–1003.Google Scholar