Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T02:44:54.675Z Has data issue: false hasContentIssue false

Differential equations and the real world*

Published online by Cambridge University Press:  17 April 2009

A.B. Tayler
Affiliation:
Mathematical Institute, Oxford, England.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Australian Mathematical Society Applied Mathematics Conference
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Aronson, D.G., Caffarelli, L.A. and Kamin, S., “How an initially stationary interface begins to move in porous medium flow”, Preprint.Google Scholar
[2]Atthey, D.R., “A finite difference scheme for melting problems”, J. Inst. Math. Appl. 13 (1974), 353366.CrossRefGoogle Scholar
[3]Blackwell, J.H. and Ockendon, J.R., “Exact solution of a Stefan problem relevant to continuous casting”, Int. J. Heat Mass Transfer (to appear).Google Scholar
[4]Brown, S.N. and Riley, N., “Flow past a suddenly heated vertical plate”, J. Fluid Mech. 59 (1973), 225237.Google Scholar
[5]Buckmaster, J., “Viscous sheets advancing over dry beds”, J. Fluid Mech. 81 (1977), 735756.CrossRefGoogle Scholar
[6]Crowley, A.B. and Ockendon, J.R., “On the numerical solution of an alloy solidification problem”, Int. J. Heat Mass Transfer 22 (1979),CrossRefGoogle Scholar
[7]Elliott, C.M. and Ockendon, J.R., Weak and variational methods for free and moving boundary problems (Pitmans, London, 1981).Google Scholar
[8]Flynn, C.P., Fundamentals of metal casting (Addison-Wesley, Reading, Massachusetts; Palo Alto; London; 1963).Google Scholar
[9]Ingham, D.B., “Singular parabolic partial-differential equations that arise in impulsive motion problems”, J. Appl. Mech. 44 (1977), 396400.CrossRefGoogle Scholar
[10]КалаШников, А.С. [Kaias˘inkov, A.S.], “Эадача Каши в класе растуших функцсй для уравнений типа нестационарной фильтрации” [The Cauchy problem for equations of non-stationary seepage type], Vestnik Moskov. Univ. Ser. I Mat. Meh. 6 (1963), 1727.Google ScholarPubMed
[11]Kamin, S., “Similar solutions and the asymptotics of filtration equations”, Arch. Rational Mech. Anal. 60 (1976), 171183.Google Scholar
[12]Kath, W.L. and Cohen, D.S., “Waiting time behaviour in a nonlinear diffusion equation”, Stud. Appl. Math. (to appear).Google Scholar
[13]Knerr, Barry F., “The porous medium equation in one dimension”, Trans. Amer. Math. Soc. 234 (1977), 381415.CrossRefGoogle Scholar
[14]Lacey, A., Ockendon, J.R. and Tayler, A.B., “Waiting time solutions of a non-linear diffusion equation”, SIAM J. Appl. Math. (to appear).Google Scholar
[15]Muskat, M., The flow of homogeneous fluids through porous media (McGraw Hill, New York, London, 1937).Google Scholar
[16]Ockendon, J.R., “Differential equations and industry”, Math. Sci. 5 (1980), 112.Google Scholar
[17]Ockendon, J.R., “Linear and nonlinear stability of a class of moving boundary problems”, Free boundary problems, 444478 (Francesco Severi, Rome, 1980).Google Scholar
[18]Ockendon, J.R. and Hodgkins, W.R., Moving boundary problems in heat flow and diffusion (Proc. Conf. University of Oxford, March 1974. Clarendon Press, Oxford, 1975).Google Scholar
[19]Olei˘nik, O.A., “A method of solution of the general Stefan problem”, Soviet Math. Dokl. 1 (1960), 13501354.Google Scholar
[20]Олейник, О.А., Калашников, А.С., Чоу, Юй-лин [Olei˘ik, O. A., Kalaš;inkov, A.S., Čžou, Yui˘-Lin], “ЭаДаЧа КОши и краевые эадачи для уравнений типа нестационариой фильтрации” [The Cauchy problem and boundary problems for equations of the type of non-station stationary filtration], Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 667704.Google ScholarPubMed
[21]Philip, J.R., “Flow in porous media”, Ann. Rev. Fluid Mech. 2 (1970), 177204.Google Scholar
[22]Riley, N., “Unsteady heat transfer for a flow over a flat plate”, J. Fluid Mech. 17 (1963), 97104.Google Scholar
[23]Rogers, S., “Some aspects of Stefan type problems”, (D. Phil thesis, University of Oxford, 1977).Google Scholar
[24]Ruben˘stei˘n, L.I., The Stefan problem (Translations of Mathematical Monographs, 27. American Mathematical Society, Providence, Rhode Island, 1971).Google Scholar
[25]Stewartson, K., “On the impulsive motion of a flat plate in a viscous fluid”, Quart. J. Mech. Appl. Math. 4 (1951), 182198.Google Scholar
[26]Stewartson, K., “On the impulsive motion of a flat plate in a viscous fluid. II”, Quart. J. Mech. Appl. Math. 26 (1973), 143152.Google Scholar
[27]Tayler, A.B., “Mathematical modelling and numerical analysis”, Bull. Inst. Math. Appl. 16 (1980), 710.Google Scholar
[28]Tayler, A.B., “Mathematical modelling: art or science?”, Math. Intelligencer 3 (1981), 6669.Google Scholar
[29]Tayler, A.B. and Nicholas, M.O., “Unsteady slow flows over a cooled flat plate”, IMA J. Appl. Math. 28 (1982), 7591.Google Scholar
[30]Wiison, D.G., Solomon, Alan D., Boggs, Paul T., Moving boundary problems (Academic Press [Harcourt Brace Jovanovich], New York, San Francisco, London, 1978).Google Scholar