Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T02:47:53.989Z Has data issue: false hasContentIssue false

Convergence theorems for topological group valued measures on effect algebras

Published online by Cambridge University Press:  17 April 2009

Francisco García Mazarío
Affiliation:
Departamento de Matemática Aplicada (E. U. Informática), Universidad Politécnica de Madrid, 28031-Madrid, Spain, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study the validity of several convergence theorems for measures defined on an effect algebra and taking values in a Hausdorff commutative topological group. We establish the Brooks-Jewett theorem and the Nikodým convergence theorem, giving as a corollary a result, due to Aarnes, about the convergence of a sequence of normal linear functionals on a von Neumann algebra. We prove two new convergence theorems concerning completely additive and τ-smooth measures, and we obtain also a convergence theorem for regular measures.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Aarnes, J., ‘The Vitali-Hahn-Saks theorem for von Neumann algebras’, Math. Scand. 18 (1966), 8792.CrossRefGoogle Scholar
[2]Alexandroff, A.D., ‘Additive set functions in abstract spaces II’, Mat. Sbornik 9 (1941), 563628.Google Scholar
[3]d'Andrea, A.B. and de Lucia, P., ‘The Brooks-Jewett theorem on an orthomodular lattice’, J. Math. Anal. Appl. 154 (1991), 507522.CrossRefGoogle Scholar
[4]d'Andrea, A.B., de Lucia, P. and Morales, P., ‘The Lebesgue decomposition theorem and the Nikodým convergence theorem on an orthomodular poset’, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 7394.Google Scholar
[5]Brooks, J.K. and Jewett, R.S., ‘On finitely additive vector measures’, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 12941298.CrossRefGoogle ScholarPubMed
[6]Bunce, L.J. and Wright, J.D.M., ‘The Mackey-Gleason problem for vector measures on projections in von Neumann algebras’, J. London Math. Soc. (2) 49 (1994), 133149.CrossRefGoogle Scholar
[7]Cohen, D.W., An introduction to Hilbert space and quantum logic (Springer-Verlag, Berlin, Heidelberg, New York, 1989).CrossRefGoogle Scholar
[8]Cook, T.A., ‘The Nikodym-Hahn-Vitali-Saks theorem for states on a quantum logic’, in Mathematical foundations of quantum theory, (Marlow, A.R., Editor) (Academic Press, London, 1978), pp. 275286.CrossRefGoogle Scholar
[9]Darst, R.B., ‘On a theorem of Nikodým with applications to weak convergence and von Neumann algebras’, Pacific J. Math. 23 (1967), 473477.CrossRefGoogle Scholar
[10]Diestel, J. and Uhl, J.J. Jr, Vector measures (American Mathematical Society, Providence, RI, 1977).CrossRefGoogle Scholar
[11]Dunford, N. and Schwartz, J.T., Linear operators, part I: general theory (John Wiley and Sons, New York, 1988).Google Scholar
[12]Dvurečenskij, A., Gleason's theorem and its applications (Kluwer Academic Publishers, Dordrecht, 1993).CrossRefGoogle Scholar
[13]Dvurečenskij, A., ‘Tensor product of difference posets’, Trans. Amer. Math. Soc. 347 (1995), 10431057.CrossRefGoogle Scholar
[14]Dvurečenskij, A., Pulmannová, S. and Svozil, K., ‘Partition logics, orthoalgebras and automata’, Helv. Phys. Acta 68 (1995), 407428.Google Scholar
[15]Feldman, D. and Wilce, A., ‘σ-additivity in manuals and orthoalgebras’, Order 10 (1993), 383392.CrossRefGoogle Scholar
[16]Foulis, D.J. and Bennet, M.K., ‘Effect algebras and unsharp quantum logics’, Found. Phys. 24 (1994), 13311352.CrossRefGoogle Scholar
[17]Foulis, D.J., Greechie, R.J. and Rüttimann, G.T., ‘Filters and supports in orthoalgebras’, Internat. J. Theoret. Phys. 31 (1992), 789807.CrossRefGoogle Scholar
[18]Freniche, F.J., ‘The Vitali-Hahn-Saks theorem for Boolean algebras with the subsequential interpolation property’, Proc. Amer. Math. Soc. 92 (1984), 362366.CrossRefGoogle Scholar
[19]Gleason, A.M., ‘Measures on the closed subspaces of a Hilbert space’, J. Math. Mech. 6 (1957), 885893.Google Scholar
[20]Greechie, R.J. and Foulis, D.J., ‘Transition to effect algebras’, Internat. J. Theoret. Phys. 34 (1995), 13691382.CrossRefGoogle Scholar
[21]Greechie, R.J., Foulis, D.J. and Pulmannová, S., ‘The center of an effect algebra’, Order 12 (1995), 91106.CrossRefGoogle Scholar
[22]Gudder, S., ‘Semi-orthoposets’, Internat. J. Theoret. Phys. 35 (1996), 11411173.CrossRefGoogle Scholar
[23]Habil, E.D., ‘Orthosummable orthoalgebras’, Internat. J. Theoret. Phys. 33 (1994), 19571984.CrossRefGoogle Scholar
[24]Habil, E.D., ‘Brooks-Jewett and Nikodým convergence theorems for orthoalgebras that have the weak subsequential interpolation property’, Internat. J. Theoret. Phys. 34 (1995), 465491.CrossRefGoogle Scholar
[25]Harding, J., ‘Decompositions in quantum logics’, Trans. Amer. Math. Soc. 348 (1996), 18391862.CrossRefGoogle Scholar
[26]Hernández-Lerma, O. and Lasserre, J.B., ‘An extension of the Vitali-Hahn-Saks theorem’, Proc. Amer. Math. Soc. 124 (1996), 36733676.CrossRefGoogle Scholar
[27]Higgins, P.J., Introduction to topological groups (Cambridge University Press, Cambridge, 1974).Google Scholar
[28]Kadison, R.V. and Ringrose, J.R., Fundamental of the theory of operator algebras, Volumes 1, 2 (Academic Press, London, 1983, 1986).Google Scholar
[29]Kalmbach, G., Orthomodular lattices (Academic Press, London, 1983).Google Scholar
[30]Kôlpka, F. and Chovanec, F., ‘D-posets’, Math. Slovaca 44 (1994), 2134.Google Scholar
[31]Kruszyński, P., ‘Probability measures on operator algebras’, Reports Math. Phys. 7 (1975), 395401.CrossRefGoogle Scholar
[32]Landers, D. and Rogge, L., ‘The Hahn-Vitali-Saks and the uniform boundedness theorem in topological groups’, Manuscripta Math. 4 (1971), 351376.CrossRefGoogle Scholar
[33]de Lucia, P. and Morales, P., ‘Some consequences of the Brooks-Jewett theorem for additive uniform semigroup-valued functions’,Conference Sem. Math. Univ. Bari 227 (1988).Google Scholar
[34]de Lucia, P. and Pap, E., ‘Noncommutative version of Nikodým boundedness theorem for uniform space-valued functions’, Internat. J. Theoret. Phys. 34 (1995), 981993.CrossRefGoogle Scholar
[35]Mackey, G.W., The mathematical foundations of quantum mechanics (Benjamin Cummings, New York, 1963).Google Scholar
[36]Maeda, S., ‘Probability measures on projections in von Neumann algebras’, Reviews Math. Phys. 1 (1990), 235290.CrossRefGoogle Scholar
[37]de Maríia, J.L. and Morales, P., ‘A non-commutative version of the Nikodým boundedness theorem.’, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 505517.Google Scholar
[38]Morales, P., ‘A non-commutative version of the Brooks-Jewett theorem’, in Proceedings of the first winter school on measure theory, Liptovsky´ Ján (Slovak. Acad. Sci., Bratislava, 1988), pp. 8892.Google Scholar
[39]Morales, P. and Mazarío, F. García, ‘The support of a measure in ordered topological groups’, Atti Sem. Mat. Fis. Univ. Modena 45 (1997), 179221.Google Scholar
[40]Morales, P., Mazarío, F. García and Guerra, P. Jiménez, ‘First Alexandroff decomposition theorem for topological lattice group valued measures’, Order 17 (2000), 4360.CrossRefGoogle Scholar
[41]Ptáck, P. and Pulmannová, S., Orthomodular structures as quantum logics (Kluwer Academic Publishers, Dordrecht, 1991).Google Scholar
[42]Schachermayer, W., On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras 214, Dissertationes Math. (Rozprawy Mat., Warszawa, 1982).Google Scholar
[43]Swartz, C., An introduction to functional analysis (Marcel Dekker, New York, 1992).Google Scholar
[44]Takesaki, M., Theory of operator algebras I (Springer-Verlag, New York, 1992).Google Scholar
[45]Traynor, T., ‘s-bounded additive set functions’, in Vector and operator valued measures and applications, (Tucker, D.H. and Maynard, H.B., Editors) (Academic Press, New York, 1973), pp. 355365.CrossRefGoogle Scholar
[46]Weber, H., ‘Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodým's boundedness theorem’, Rocky Mountain J. Math. 16 (1986), 253275.CrossRefGoogle Scholar
[47]Zhang, X-D., ‘On weak compactness in spaces of measures’, J. Functional Analysis 143 (1997), 19.CrossRefGoogle Scholar