Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T19:25:50.886Z Has data issue: false hasContentIssue false

Construction of elliptic curves with cyclic groups over prime fields

Published online by Cambridge University Press:  17 April 2009

Naoya Nakazawa
Affiliation:
Graduate school of Science, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai, Osaka 599–8531, Japan e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this article is to construct families of elliptic curves E over finite fields F so that the groups of F-rational points of E are cyclic, by using a representation of the modular invariant function by a generator of a modular function field associated with the modular group Γ0(N), where N = 5, 7 or 13.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Deligne, P. and Rapoport, M., ‘Les schemes de modulus de courbes elliptiques’, in Modular functions of one variable, II, Lecture Notes in Math. 349 (Springer-Verlag, Berlin, 1973), pp. 143316.CrossRefGoogle Scholar
[2]Elkies, N.D., ‘Elliptic and modular curves over finite fields and related computational issues’, AMS/IP Studies in Advanced Math. 7 (1998), 2176.CrossRefGoogle Scholar
[3]Gupta, R. and Murty, M.R., ‘Cyclicity and generation of points mod p on elliptic curves’, Invent. Math. 101 (1990), 225235.CrossRefGoogle Scholar
[4]Ishii, N., ‘Defining equations of modular function fields’, Math. Japon. 38 (1993), 941951.Google Scholar
[5]Morain, F., ‘Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques’, J. Théor. Nombres Bordeaux 7 (1995), 255282.CrossRefGoogle Scholar
[6]Nakazawa, N., ‘Parametric families of elliptic curves with cyclic -rational points groups’, Tokyo J. Math. 28 (2005), 381392.CrossRefGoogle Scholar
[7]Schoeneberg, B., Elliptic modular functions (Springer-Verlag, Berlin, Heildelberg, New York, 1974).CrossRefGoogle Scholar
[8]Schoof, R., ‘Counting points on elliptic curves over finite fields’, J.Théor. Nombres Bordeaux 7 (1995), 219254.CrossRefGoogle Scholar
[9]Silverman, J.H., The arithmetic of elliptic curves, Graduate Text in Mathematics 106 (Springer-Verlag, Berlin, Heidelberg, New York 1986.).CrossRefGoogle Scholar