Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T04:44:13.220Z Has data issue: false hasContentIssue false

Conjugaison Géodésique en rang 1

Published online by Cambridge University Press:  17 April 2009

Hamid-Reza Fanaï
Affiliation:
Department of Mathematical Sciences, Sharif University of Technology, P.O.Box 11365–9415, Tehran, Iran, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Soit (M, g0) une variété riemannienne compacte de courbure sectionnelle négative. Soit g1 une autre métrique riemannienne sur M de rang 1. On montre que l'égalité des spectres marqués des longueurs de g0 et g1 implique que le flot géodésique de g0 est un facteur de celui de g1.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Fanaï, H.-R., ‘Spectre marqué des longueurs et métriques conformément équivalentes’, Bull. Belg. Math. Soc. 5 (1998), 525528.Google Scholar
[2]Fathi, A. et Flaminio, L., ‘Infinitesimal conjugacies and Weil-Petersson metric’, Ann. Inst. Fourier 43 (1993), 279299.CrossRefGoogle Scholar
[3]Ghys, E. et de la Harpe, P., Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83 (Birkhauser Boston, Inc., Boston, MA, 1990).CrossRefGoogle Scholar
[4]Hamenstädt, U., ‘Time preserving conjugacies of geodesic flows’, Ergodic Theory Dynamical Systems 12 (1992), 6774.CrossRefGoogle Scholar
[5]Kim, I., ‘Ergodic theory and rigidity on the symmetric space of non-compact type’, Ergodic Theory Dynamical Systems 21 (2001), 93114.CrossRefGoogle Scholar
[6]Knieper, G., ‘Das Wachstum der Äquivalenzklassen geschlossener Geodätischer in kompakten Riemannschen Mannigfaltigkeiten’, Arch. Math. (Basel) 40 (1983), 559568.CrossRefGoogle Scholar
[7]Knieper, G., ‘Volume growth, entropy and the geodesic stretch’, Math. Res. Lett. 2 (1995), 3958.CrossRefGoogle Scholar
[8]Knieper, G., ‘On the asymptotic geometry of nonpositively curved manifolds’, Geom. Funct. Anal. 7 (1997), 755782.CrossRefGoogle Scholar
[9]Knieper, G., ‘The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds’, Ann. Math. 148 (1998), 291314.CrossRefGoogle Scholar
[10]Yue, C.B., ‘The ergodic theory of discrete isometry groups on manifolds of variable negative curvature’, Trans. Amer. Math. Soc. 348 (1996), 49655005.CrossRefGoogle Scholar