No CrossRef data available.
Article contents
Conjugaison Géodésique en rang 1
Published online by Cambridge University Press: 17 April 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Soit (M, g0) une variété riemannienne compacte de courbure sectionnelle négative. Soit g1 une autre métrique riemannienne sur M de rang 1. On montre que l'égalité des spectres marqués des longueurs de g0 et g1 implique que le flot géodésique de g0 est un facteur de celui de g1.
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 71 , Issue 1 , February 2005 , pp. 121 - 126
- Copyright
- Copyright © Australian Mathematical Society 2005
References
[1]Fanaï, H.-R., ‘Spectre marqué des longueurs et métriques conformément équivalentes’, Bull. Belg. Math. Soc. 5 (1998), 525–528.Google Scholar
[2]Fathi, A. et Flaminio, L., ‘Infinitesimal conjugacies and Weil-Petersson metric’, Ann. Inst. Fourier 43 (1993), 279–299.CrossRefGoogle Scholar
[3]Ghys, E. et de la Harpe, P., Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83 (Birkhauser Boston, Inc., Boston, MA, 1990).CrossRefGoogle Scholar
[4]Hamenstädt, U., ‘Time preserving conjugacies of geodesic flows’, Ergodic Theory Dynamical Systems 12 (1992), 67–74.CrossRefGoogle Scholar
[5]Kim, I., ‘Ergodic theory and rigidity on the symmetric space of non-compact type’, Ergodic Theory Dynamical Systems 21 (2001), 93–114.CrossRefGoogle Scholar
[6]Knieper, G., ‘Das Wachstum der Äquivalenzklassen geschlossener Geodätischer in kompakten Riemannschen Mannigfaltigkeiten’, Arch. Math. (Basel) 40 (1983), 559–568.CrossRefGoogle Scholar
[7]Knieper, G., ‘Volume growth, entropy and the geodesic stretch’, Math. Res. Lett. 2 (1995), 39–58.CrossRefGoogle Scholar
[8]Knieper, G., ‘On the asymptotic geometry of nonpositively curved manifolds’, Geom. Funct. Anal. 7 (1997), 755–782.CrossRefGoogle Scholar
[9]Knieper, G., ‘The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds’, Ann. Math. 148 (1998), 291–314.CrossRefGoogle Scholar
[10]Yue, C.B., ‘The ergodic theory of discrete isometry groups on manifolds of variable negative curvature’, Trans. Amer. Math. Soc. 348 (1996), 4965–5005.CrossRefGoogle Scholar
You have
Access