Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T23:26:08.275Z Has data issue: false hasContentIssue false

A closed simplicial model category for proper homotopy and shape theories

Published online by Cambridge University Press:  17 April 2009

J.M. García-Calcines
Affiliation:
Departamento de Matemática FundamentalUniversidad de La Laguna38271 La Laguna, Spain e-mail: [email protected]
M. Garcia-Pinillos
Affiliation:
Departemento de MatemáticasUniversidad de Zaragoza50009 Zaragoza, Spain e-mail: [email protected]
L.J. Hernández-Paricio
Affiliation:
Departemento de MatemáticasUniversidad de Zaragoza50009 Zaragoza, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we introduce the notion of exterior space and give a full embedding of the category P of spaces and proper maps into the category E of exterior spaces. We show that the category E admits the structure of a closed simplicial model category. This technique solves the problem of using homotopy constructions available in the localised category HoE and in the “homotopy category” π0E, which can not be developed in the proper homotopy category.

On the other hand, for compact metrisable spaces we have formulated sets of shape morphisms, discrete shape morphisms and strong shape morphisms in terms of sets of exterior homotopy classes and for the case of finite covering dimension in terms of homomorphism sets in the localised category.

As applications, we give a new version of the Whitehead Theorem for proper homotopy and an exact sequence that generalises Quigley's exact sequence and contains the shape version of Edwards-Hastings' Comparison Theorem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Ayala, R., Dominguez, E. and Quintero, A., ‘A theoretical framework for Proper Homotopy Theory’, Math. Proc. Cambridge Philos. Soc. 107 (1990), 475482.CrossRefGoogle Scholar
[2]Baues, H.J., Algebraic homotopy (Cambridge University Press, Cambridge, 1988).Google Scholar
[3]Baues, H.J., ‘Foundations of proper homotopy theory’, (preprint, 1992).Google Scholar
[4]Brown, E.M., On the proper homotopy type of simplicial complexes, Lecture Notes in Math. 375 (Springer-Verlag, Berlin, Heidelberg, New York, 1975).Google Scholar
[5]Cabeza, J., Elvira, M. C. and Hernández, L. J., ‘Una categoría cofibrada para las aplicaciones propias’, in Acdas XIV Jor. Hispano-Lusas, Vol. II (Univ. de La Laguna, 1989), pp. 595–590.Google Scholar
[6]Cathey, F., Strong shape theory, Lecture Notes in Math. 870 (Springer-Verlag, Berlin, Heidelberg, New York, 1981), pp. 215–238.Google Scholar
[7]Cordier, J.M. and Porter, T., Shape theory, categorical methods of approximation, Ellis Horwood Ser. Math. Appl. (Ellis Horwood, Chichester, Halstead Press, New York, 1989).Google Scholar
[8]Farjoun, E. Dror, Cellular Spaces, Null Spaces and Homotopy Localization, Lecture Notes in Math. 1622 (Springer-Verlag, Berlin, Heidelberg, New York, 1995).Google Scholar
[9]Edwards, D. and Hastings, H., Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math. 542 (Springer-Verlag, Berlin, Heidelberg, New York, 1976).CrossRefGoogle Scholar
[10]Freedman, M. H., ‘The topology of four-dimensional manifolds’, J. Diff. Geom. 17 (1982), 357453.Google Scholar
[11]Freudenthal, H., ‘Über die Enden topologisher Räume und Gruppen’, Math. Zeith. 53 (1931), 692713.CrossRefGoogle Scholar
[12]Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory (Springer-Verlag, Berlin, Heidelberg, New York, 1966).Google Scholar
[13]Hirschhorn, P.S., ‘Localization, cellularization and homotopy colimits’, (preprint, 1995).Google Scholar
[14]Lane, S. Mac, Categories for the working mathematician (Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[15]Lane, S. Mac and Moerdijk, I., Sheaves in geometry and logic (Springer-Verlag, Berlin, Heidelberg, New York, 1991).Google Scholar
[16]Porter, T., ‘Stability results for topological spaces’, Math. Z. 140 (1974), 121.CrossRefGoogle Scholar
[17]Porter, T., ‘Čech and Steenrod homotopy and the Quigley exact couple in strong shape and proper homotopy theory’, J. Pure Appl. Alg. 24 (1983), 303312.CrossRefGoogle Scholar
[18]Porter, T., ‘Proper homotopy theory’, in Handbook of Algebraic Topology (North Holland, Amsterdam, 1995), pp. 127167.CrossRefGoogle Scholar
[19]Quigley, J.B., ‘An exact sequence from the nth to the (n−l)-st fundamental group’, Fund. Math. 77 (1973), 195210.CrossRefGoogle Scholar
[20]Quillen, D., Homotopical Algebra, Lecture Notes in Math. 43 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[21]Quillen, D., ‘Rational homotopy theory’, Ann. of Math. 90 (1969), 205295.CrossRefGoogle Scholar
[22]Siebenmann, L.C., The obstruction of finding a boundary for an open manifold of dimension greater than five, (Thesis), 1965.Google Scholar
[23]Siebenmann, L.C., ‘Infinite simple homotopy types’, Indag. Math. 32 (1970), 479495.CrossRefGoogle Scholar