Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T03:06:29.725Z Has data issue: false hasContentIssue false

A characterisation of reflexive modules

Published online by Cambridge University Press:  17 April 2009

José L. Gómez Pardo
Affiliation:
Departamento de AlxebraUniversidade de Santiago15771 Santiago de CompostelaSpain
Pedro A. Guil Asensio
Affiliation:
Departamento de MatemáticasUniversidad de Murcia30071 MurciaSpain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterise reflexive modules over the rings R such that each finitely generated submodule of E(RR) is torsionless (left QF-3″ rings) by means of a suitable linear compactness condition relative to the Lambek torsion theory.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Pardo, J.L. Gómez and Asensio, P.A. Guil, ‘Morita dualities associated with the R-dual functors’, J. Pure Appl. Algebra 93 (1994), 179194.CrossRefGoogle Scholar
[2]Pardo, J.L. Gómez and Asensio, P.A. Guil, ‘Reflexive modules over QF-3′ rings’, Tsukuba J. Math 19 (1995), 387395.Google Scholar
[3]Hoshino, M., ‘On Lambek torsion theories’, Osaka J. Math. 29 (1992), 447453.Google Scholar
[4]Hoshino, M. and Takashima, S., ‘On Lambek torsion theories, II’, Osaka J. Math. 31 (1994), 729746.Google Scholar
[5]Masaike, K., ‘Semiprimary QF-3 rings’, Comm. Algebra 11 (1983), 377389.CrossRefGoogle Scholar
[6]Masaike, K., ‘Duality for quotient modules and a characterization of reflexive modules’, J. Pure Appl. Algebra 28 (1983), 265277.CrossRefGoogle Scholar
[7]Masaike, K., ‘Reflexive modules over QF-3 rings’, Canad. Math. Bull. 35 (1992), 247251.Google Scholar
[8]Müller, B.J., ‘Linear compactness and Morita duality’, J. Algebra 16 (1970), 6066.Google Scholar
[9]Stenström, B., Rings of quotients (Springer-Verlag, Berlin, Heidelberg, New York, 1975).Google Scholar