Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T17:58:18.715Z Has data issue: false hasContentIssue false

The Centre of an FPF ring need not be FPF

Published online by Cambridge University Press:  17 April 2009

John Clark
Affiliation:
Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Brown, K.A., ‘Quotient rings of group rings’, Compositio Math. 36 (1978), 243254.Google Scholar
[2]Faith, C., ‘Injective modules and injecctive quotient rings’, in Lecture Notes in Pure and Applied Mathematics 72 (Marcel Dekker, Inc., New York, 1982).Google Scholar
[3]Faith, C. and Page, S., ‘FPF ring theory. Faithful modules and generators of mod- R’, in London Math. Soc. Lecture Notes 88 (Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1984).Google Scholar
[4]Passman, D.S., ‘The algebraic structure of group rings’, in Pure Appl. Math. (Wiley-Immterscience, New York, London, Sydney, 1977).Google Scholar
[5]Renault, G., ‘Sur les anneaux de groupes’, CR. Acad. Sci. Paris Sér.A-B 273 (1971), 8487.Google Scholar
[6]Renault, G., ‘Sur les aiumeaux de groupes’, in Rings, modules and radicals 6: Proc. Colloq., Keszthely 1971, pp. 391396 (Colloq. Math. Soc. János Bolyai, North-Holland Amsterdam, 1973).Google Scholar