Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T17:18:26.650Z Has data issue: false hasContentIssue false

The Bloch space and Besov spaces of analytic functions

Published online by Cambridge University Press:  17 April 2009

Karel Stroethoff
Affiliation:
Department of Mathematical Sciences, The University of Montana, Missoula MT 59812-1032, United States of America
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall give an elementary proof of a characterisation for the Bloch space due to Holland and Walsh, and obtain analogous characterisations for the little Bloch space and Besov spaces of analytic functions on the unit disk in the complex plane.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

REFERENCES

[1]Anderson, J.M., Clunie, J. and Pommerenke, Ch., ‘On Bloch functions and normal functions’, J. Reine Angew. Math. 270 (1974), 1237.Google Scholar
[2]Arazy, J. and Fisher, S.D., ‘Some aspects of the minimal Möbius-invariant spaces of analytic functions on the unit disc’, in Interpolation spaces and allied topics in analysis, (Cwikel, M. and Peetre, J., Editors), Lecture Notes in Math. 1070 (Springer-Verlag, Berlin, Heidelberg, New York, 1984), pp. 2444.CrossRefGoogle Scholar
[3]Arazy, J. and Fisher, S.D., ‘The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces’, Illinois J. Math. 29 (1985), 449462.CrossRefGoogle Scholar
[4]Arazy, J., Fisher, S.D. and Peetre, J., ‘Möbius-invariant function spaces’, J. Reine Angew. Math. 363 (1985), 110145.Google Scholar
[5]Axler, S., ‘The Bergman space, the Bloch space, and commutators of multiplication operators’, Duke Math. J. 53 (1986), 315332.CrossRefGoogle Scholar
[6]Duren, P.L., Theory of Hp spaces (Academic Press, 1970).Google Scholar
[7]Garnett, J.B., Bounded analytic functions (Academic Press, 1981).Google Scholar
[8]Holland, F. and Walsh, D., ‘Criteria for membership of Bloch space and its subspace BMOA’, Math. Ann. 273 (1986), 317335.CrossRefGoogle Scholar
[9]Rubel, L.A. and Timoney, R., ‘An extremal property of the Bloch space’, Proc. Amer. Math. Soc. 75 (1979), 4549.CrossRefGoogle Scholar
[10]Stroethoff, K., ‘Besov-type characterisations for the Bloch space’, Bull. Austral. Math. Soc. 39 (1989), 405420.CrossRefGoogle Scholar
[11]Stroethoff, K., ‘Nevanlinna-type characterizations for the Bloch space and related spaces’, Proc. Edinburgh Math. Soc. 33 (1990), 123141.CrossRefGoogle Scholar
[12]Zhu, K., Operator theory in function spaces (Marcel Dekker, 1990).Google Scholar