Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T17:32:28.145Z Has data issue: false hasContentIssue false

An inversion theorem for set-valued maps

Published online by Cambridge University Press:  17 April 2009

D. Aze
Affiliation:
Université de Perpignan, Mathématiques, Av. de Villeneuve, 66025 Perpignan, Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to give an inversion theorem for set-valued maps involving both some known results for functions and set-valued maps. To do this we introduce a notion of strict differentiability for set-valued maps and we use a Newton like method assuming the derivative to be surjective. Moreover we prove the pseudo-Lipschitz regularity of the inverse.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Altman, M., ‘Inverse differentiability, contractors and equations in Banach space’, Studia Math. 40 (1973), 115.CrossRefGoogle Scholar
[2]Altman, M., ‘Directional contractors and equations in Banach spaces’, Studia Math. 46 (1973), 101110.CrossRefGoogle Scholar
[3]Aubin, J-P., ‘Contingent derivative of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions’, Mathematical analysis and applications, Part A (Advances in Math. Suppl. Stud. 7A) (1981), 159229.Google Scholar
[4]Aubin, J-P. and Ekeland, I., Applied nonlinear analysis (J. Wiley, 1984).Google Scholar
[5]Aubin, J-P. and Frankowska, H., ‘On inverse function theorems for set-valued maps’, J. Math. Pures Appl. 86 (1987), 7189.Google Scholar
[6]Banks, H.T. and Jacobs, M.Q., ‘A differential calculus for multifunctions’, J. Math. Anal. Appl. 29 (1970), 246272.CrossRefGoogle Scholar
[7]Barit, W. and Wood, G.R., ‘Differentiable retracts and a modified inverse function theorem’, Bull. Austral. Math. Soc. 18 (1978), 3743.CrossRefGoogle Scholar
[8]De Blasi, F.S., ‘On the differentiability of multifunctions’, Pacific J. Math. 66 (1976), 6781.CrossRefGoogle Scholar
[9]Chow, S.N. and Lasota, A., ‘An implicit function theorem for nondifferentiable mappings’, Proc. Amer. Math. Soc. 34 (1972), 141146.CrossRefGoogle Scholar
[10]Clarke, F.H., ‘On the inverse function theorem’, Pacific. J. Math. 64 (1976), 97102.CrossRefGoogle Scholar
[11]Frankowska, H., ‘Théorème d'application ouverte pour les correspondances’, C.R. Acad. Sci. Paris. Sér I Math. 302 (1986), 559568.Google Scholar
[12]Garay, B. M., ‘On an inverse theorem of Halkin”, Annales Univ. Sci. Budapest 38 (1982), 129131.Google Scholar
[13]Gautier, S., Différentiabilité des multiapplication, (Publications Mathématiques Université de Pau), 1978.Google Scholar
[14]Gautier, S. and Isac, G. and Penot, J-P., ‘Surjectivity of multifunctions under generalised differentiability assumptions’, Bull. Austral. Math. Soc. 28 (1983), 1321.CrossRefGoogle Scholar
[15]Graves, L.M., ‘Some mapping theorems’, Duke Math. 17 (1950), 111114.CrossRefGoogle Scholar
[16]Halkin, H., ‘Implicit functions and optimization problems without continuous differentiability of the data’, SIAM J. Control 12 (1974), 229236.CrossRefGoogle Scholar
[17]Halkin, H., ‘Interior mapping theorem with set-valued derivatives’, Jour. Analyse Math. 30(1976), 200207.CrossRefGoogle Scholar
[18]Ljusternik, L.A. and Sobolev, S.L., Elements of functional analysis (Ungar New-York, 1961).Google Scholar
[19]Martelli, M. and Vignoli, A., ‘On differentiability of multivalued maps’, Boll. Un. Mat. Ital. (4) 10 (1974), 701712.Google Scholar
[20]Methlouti, H., Cahiers du CEREMADE n° 7702, in, Univ. Paris IX, 1977.Google Scholar
[21]Mirica, S., ‘A note on the generalised differentiability of mappings’, Nonlinear Anal. 4 (1980), 567575.CrossRefGoogle Scholar
[22]Nurminski, E.A., ‘On differentiability of multifunctions’, (Russian), Kibernetika (Kiev) 5 (1978), 4648.Google Scholar
[23]Robinson, S.M., ‘An inverse function theorem for a class of multivalued functions’, Proc. Amer. Math. Soc. 41, 1 (1973), 211218.CrossRefGoogle Scholar
[24]Robinson, S.M., ‘Normed convex processes’, Trans. Amer. Math. Soc. 174 (1972), 127140.CrossRefGoogle Scholar
[25]Robinson, S.M., ‘Regularity and stability for convex multivalued function’, Math. Oper. Res. 1 (1976), 130143.CrossRefGoogle Scholar
[26]Urcescu, C., ‘Multifunctions with convex closed graphs’, (100), Czechoslovak Math. J. 25 (1975), 428441.Google Scholar