Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T02:46:17.209Z Has data issue: false hasContentIssue false

An extension of the Grünwald–Marcinkiewicz interpolation theorem

Published online by Cambridge University Press:  17 April 2009

T. M. Mills
Affiliation:
Department of Mathematics, La Trobe University, PO Box 199, Bendigo Vic. 3552, Australia
P. Vértesi
Affiliation:
Mathematical Institute of the Hungarian Academy of Sciences, PO Box 127, Budapest H-1364, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Just over 60 years ago, G. Grünwald and J. Marcinkiewicz discovered a divergence phenomenon pertaining to Lagrange interpolation polynomials based on the Chebyshev nodes of the first kind. The main result of the present paper is an extension of their now classical theorem. In particular, we shall show that this divergence phenomenon occurs for odd higher order Hermite–Fejér interpolation polynomials of which Lagrange interpolation polynomials form one special case.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Byrne, G.J., Mills, T.M. and Smith, S.J., ‘The Lebesgue function for generalized Hermite-Fejér interpolation on the Chebyshev nodes’, The ANZIAM J. 42 (2000), 98109.CrossRefGoogle Scholar
[2]Carleson, L., ‘On convergence and growth of parital sums of Fourier series’, Acta Math. 116 (1966), 135157.CrossRefGoogle Scholar
[3]DeVore, R.A. and Lorentz, G.G., Constructive approximation (Springer-Verlag, Berlin, Heidelberg, New York, 1994).Google Scholar
[4]Grünwald, G., “Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome’, Acta Sci. Math. (Szeged) 7 (1935), 207221.Google Scholar
[5]Grünwald, G., ‘Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome Stetiger Funktionen’, Ann. Math. 37 (1936), 908918.CrossRefGoogle Scholar
[6]Marcinkiewicz, J., ‘Sur la divergence des polynomes d'interpolation’, Acta Litt. Sci. Szeged 8 (1936/1937), 131135. (Also in A. Zygmund (ed.) Józef Marcinkiewicz: Collected Papers (Inst. Mat. Polskiej Akad. Nauk, Warsaw, 1964), pp. 204–209).Google Scholar
[7]Natanson, I.P., Constructive function theory III (Frederick Ungar, New York, 1965).Google Scholar
[8]Rivlin, T.J., Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed. (Wiley, New York, 1990).Google Scholar
[9]Smith, S.J., ‘On the fundamental polynomials for Hermite-Fejér interpolation of Lagrange type on the Chebyshev nodes’, J. Inequal. Appl. 3 (1999), 267277.Google Scholar
[10]Smith, S.J., ‘Generalized Hermite-Fejér interpolation polynomials’, Exposition. Math. (to appear).Google Scholar
[11]Szabados, J., ‘On the order of magnitude of fundamental polynomials of Hermite interpolation’, Acta Math. Hung. 61 (1993), 357368.CrossRefGoogle Scholar
[12]Szabados, J. and Vértesi, P., Interpolation of functions (World Sci. Press, Singapore, 1990).CrossRefGoogle Scholar
[13]Vértesi, P., ‘Practically ρ-normal pointsystems’, Acta Math. Hungar. 67 (1995), 237251.CrossRefGoogle Scholar