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AN E X T E N S I O N OF T H E
G R U N W A L D - M A R C I N K I E W I C Z I N T E R P O L A T I O N T H E O R E M

T.M. MILLS AND P . VERTESI

Just over 60 years ago, G. Griinwald and J. Marcinkiewicz discovered a divergence
phenomenon pertaining to Lagrange interpolation polynomials based on the Cheby-
shev nodes of the first kind. The main result of the present paper is an extension
of their now classical theorem. In particular, we shall show that this divergence
phenomenon occurs for odd higher order Hermite-Feje'r interpolation polynomials of
which Lagrange interpolation polynomials form one special case.

1. T H E RESULT OF GRUNWALD AND MARCINKIEWICZ

We begin by recalling the result of Grunwald and Marcinkiewicz. Let Z + =
{1,2,3 , . . . }. Consider the infinite, triangular array of points in [—1,1] denoted by

(1) T := (xk<n = cos((2fc - l)jr/(2n)) : * = 1, 2 , . . . , n; n 6 Z+).

For each n, the points {xi,n, £2,n, • • • > £n,n} are the distinct zeros of the Chebyshev poly-
nomial of the first kind Tn(x) := cosn9 where x € [—1,1], x — cosO, and 8 € [0,7r].

Let / : [-1,1] -> R- Then, for each n € Z + , define the Lagrange interpolation
polynomial Ln_i(T, f){x) = Ln-i(T, f, i ) to be the unique polynomial of degree n — 1 or
less such that Ln_i(T,/ ,x t ,n) =/(z*.n) (k = 1,2,... ,n). The study of Ln^(TJ,x) as
an approximation to f(x) has a long and interesting history. (See Natanson [7], Rivlin
[8], Szabados and Vertesi [12].) A classical negative result discovered by Geza Grunwald
[4], [5] and Jozef Marcinkiewicz [6], independently of each other, is the following. (See
Natanson [7] for a proof, but only for the open interval (—1,1).)

THEOREM 1 . (G. Griinwald, J. Marcinkiewicz) There exists a function f €
C [ - l , 1] such that, for all x G [-1,1], the sequence {Ln-i(T, f,x) : n € Z+} diverges.
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300 T.M. Mills and P. Vertesi [2]

Theorem 1 is important for two reasons.

First, it shows, dramatically, that Lagrange interpolation polynomials may be very
poor approximating tools. While it is well known that, in general, Lagrange interpolation
has its faults, it is widely accepted that Lagrange interpolation based on the Chebyshev
nodes can be quite useful. Theorem 1 shows the limitations of Lagrange interpolation
even on these nodes.

Second, it is well known that there are many similarities between the approximation
properties of

(i) the partial sums of the Fourier-Chebyshev expansion of / e C[—1,1] and

(ii) the Lagrange interpolation polynomials Ln_i(/ , x).

These similarities can be used with great effect. For example, a result known for (i)
will suggest an analogous result for (ii). However, the analogy is not perfect. A famous
result of Carleson [2] implies that if / € C[— 1,1] then the partial sums of the Fourier-
Chebyshev expansion of/ converge to / almost everywhere in [-1,1]. On the other hand,
Theorem 1 shows that this is certainly not the case for the interpolating polynomials.
Thus, Theorem 1 adds to our understanding of the relationship between (i) and (ii).

The main result of this paper is a generalisation of Theorem 1. We shall show
that the Griinwald-Marcinkiewicz divergence phenomenon occurs, not only for Lagrange
interpolation, but for certain higher order Hermite-Fejer interpolation processes as well.
In Section 2 we describe the setting for the main result and state this result. Section 3
defines some notation and Section 4 presents a sequence of technical lemmas. The proof
of the main result is divided into two parts: the first part appears in Section 5 and the
second part in Section 6.

2. HIGHER ORDER H E R M I T E - F E J E R INTERPOLATION

In this section, we recall the basic concepts of higher order Hermite-Fejer interpola-
tion polynomials and we state the main result of the paper.

Let m € Z+ and let / : [-1,1] -» R. Then, for each n € Z+, there is a unique
polynomial Hmn(T, f)(x) = Hmn(T, f,x) of degree mn — 1, or less, such that

Hm,n{T, f, xk,n) = /(**,„) (A: = 1,2, . . . . n)

and

where Hm]n{T,f,x) denotes the j - th derivative of Hm<n(T, f, x) with respect to x.

We refer to Hmn(T, f,x) as a higher order Hermite-Fejer interpolation polynomial

(the order being m — 1) corresponding to the function / and the n-th row of the matrix
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of nodes T. Recently there has been considerable interest in such polynomials for the
following reason.

In the case m = 1, the interpolation polynomials Hm<n(T,f,x) are merely the La-
grange interpolation polynomials Ln_i(T, / , x) discussed in Section 1. In the case m = 2,
the interpolation polynomials Hm,n(T, f,x) become the well known Hermite-Fejer inter-
polation polynomials which behave quite differently from Lagrange interpolation polyno-
mials. (See Natanson [7], Rivlin [8], or Szabados and Vertesi [12].) Thus, the interpo-
lation polynomials HmtJt(T, },x) generalise these classical interpolation polynomials. For
an excellent survey of these polynomials see Smith [10].

What happens when m > 2 ? It appears that, in many ways, the behaviour of
Hm,n{T, / , x) is determined by the parity of m.

I fmisodd , we expect that HmtU{T, f, x) may behave like Hi<n(T,f,x) - Z,n_i(T, / , x).
For example, Szabados [11, Theorem 2] has shown that the classical theorem of G. Faber
concerning the divergence of Lagrange interpolation can be extended to a theorem for
odd order Hermite-Fejer interpolation polynomials.

If m is even, we expect that Hm,n(T, / , x) may behave like H2,n(T, f, x). For example,
Vertesi [13, (1.4), (1.5), Theorem 2.3] has shown that certain convergence theorems for
Hermite-Fejer interpolation polynomials can be extended to theorems for even order
Hermite-Fejer interpolation polynomials.

There is no general theorem to bear out this expectation — indeed, in some specific
cases, our expectations are not realised! (For example, see Byrne et al. [1].) However,
this theme has been the basis for many research investigations and so too it is in this
paper.

The aim of this paper is to show that Theorem 1, which is concerned with the
operator Ln_i = Hln, can be extended to a result for the operator Hmn where m is any
odd number. We shall prove the following result.

THEOREM 2 . Let m e {1,3,5, 7 , . . . }. Then, there exists a function f 6 C [ - l , 1]
such that, for all x € [—1,1],

limsup|#m,n(T, f,x)\ = +00.
n-»oo

3. NOTATION

Often we shall writes* forz*,n = cos((2fc-l)7r/(2n)) and 9k for^,n = (2k-l)ir/{2n)
provided that no confusion arises. If ip £ C[—1,1] we define \\ip\\ := sup{|V>(x)| : - 1 $
x ^ l } . We shall use c or ci,C2,... to denote absolute positive constants; repeated use
of the same symbol does not imply equal values of the corresponding constants.

It will be necessary to refer to the fundamental polynomials of higher order Hermite
interpolation. The following technicalities and notation can be found in Szabados [11].
Suppose that m, n are natural numbers and {tu t2,..- ,tn} are distinct points in [-1,1].
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3 0 2 T . M . M i l l s a n d P . V e r t e s i [4]

T h e n t h e r e e x i s t u n i q u e p o l y n o m i a l s {Ajkn : O^j^m— 1, l^k^n} s u c h t h a t t h e
d e g r e e o f Ajkn(x) i s a t m o s t ran — 1, a n d

(2) A { J )
k n { t s ) = 5 j r 6 k s ( j , r = 0 , 1 , . . . , m - l ; k , s = 1 , 2 , . . . , n ) .

These polynomials are the fundamental polynomials of Hermite interpolation. Of course,
the polynomial Ajkn also depends on m and on the nodes t\,t2,--. ,tn. Our notation
does not make this dependence explicit, but, throughout this paper, m is a fixed positive,
odd number and, in any situation, the corresponding nodes will be clear.

The fundamental polynomials are pertinent to our discussion for several reasons
including the fact that we can write

(3) Hm,n(T, / ,*) = £ f(xk,n)AQkn(x).

We shall usually write #„,,„(/, i ) for Hm,n{T,f,x).

4. LEMMAS

Our proof of Theorem 2 uses the general structure of the proof of Theorem 1 in
Natanson [7] together with more recent results concerning higher order Hermite-Fejer
interpolation polynomials.

LEMMA 1 .

(i) If n 6 Z+ and Sn = {xk,n = cos((2& - l)7r/2n) : A: = 1,2,... ,n} then
Sn n Sn+1 = 0.

(ii) If S is a finite subset of ( —1,1) then there exists arbitrarily large values of
n for which Sn D 5 = 0 and Sn+1 n 5 = 0 or {0}.

PROOF: See Natanson [7, p. 36]. D

LEMMA 2 . If m e {1 ,3 ,5 , . . . } then there exists a constant c^ > 0 such that if

ne Z+ andke {1 ,2 , . . . ,n} then ||y40Jtn|| ^ Cm-

P R O O F : See Smith [9]. D

LEMMA 3 . Suppose that m is a fixed element of {1,3,5,7, . . . }, n is a fixed element

ofZ+, and {tut2,... ,*„} are n fixed, distinct nodes in [-1,1]. Let cp € Cm~l[-l,l] be

such that <p(j){tk) = 0 (1 ^ k < n; 1 ^ j ^ m - 1) and e > 0. Then there exists a
polynomial R{x) such that R(tk) = 4>{tk) (1 < A: < n), RW>(tk) = 0 (1 ^ A: ^ n; 1 ^ j ^

m-l) and \\R-<j>\\ ^ e.

PROOF: Let Ajkn(x) (1 ^ k ^ n; 0 ^ j- ^ m - 1) be the fundamental polynomials
of higher order Hermite interpolation based on the nodes {t\,... ,tn}. Let P(x) be a
polynomial to be specified and define the polynomial s(x) by

n m—1 n
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In passing we note that if the degree of P is sufficiently large then

AOkn(x)P(tk)
J t = l j=l k=l

Define
R{x) :=s{x)+P(x).

Then, by the properties of the fundamental functions Ajkn(x) in (2) we have, for
1 ^ k ^ n

R(tk) = s.(tk) + P{tk) = <j>(tk) - P(tk) + P(tk) = 4>(tk),

and, for 1 ̂  k ^ n, 1 ̂  j ^ m - 1, we have

RU)(tk) = aW(tk) + Pu\tk) = 4>(i\tk) - pW{tk) + Pu\tk) = o.

Also, we have

\R(x) - 4>(x)\ = \s(x) + P(x) - 4>(x)\

- PU)

k=l j = l fc=l

and so

WR - 4>\\ ^ u - p\\

Now remember that m,n and the nodes ti,t2,... , t n are all fixed. So we can appeal to
Trigub's theorem on simultaneous approximation (see for example DeVore and Lorentz
[3, Theorem 4.1, p. 245]) which guarantees that there is a polynomial P such that

can all be made arbitrarily small. Thus we can choose P so that ||i? - <j>\\ ^ e. This
completes the proof of the Lemma. D

REMARK. We are not saying anything about the degree of R.

LEMMA 4 . Ifn^2 and l ^ k ^ n - l then

Tl\ COS#Jt,n - COS0jt+1,n| 37T2
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PROOF: We shall write 6k = 9k<n = (2k - l)n/{2n). Thus

E: =

sin f̂c

2nsin((0k+ek+l)/2)sin((ek+l -0k)/2)
sinOk

1 sin 9k

~ nsm((9k+9k+1)/2) "

We now consider three cases.

Case 1. Suppose that TT/2 < 6k < 9k+1 ^ n. Then sin((^ + 9k+x)/2) < sin9k. So

7T OTT 2

Case 2. Suppose that 0 < 9k < 6k+i ^ IT/2. Then sin((0* + 9k+1)/2) < sin^+i. So

E > 1 singt 1 26k 2(2k - 1) = 2 / 2
" 7T sin 0fc+1 " ix x9k+1 7r2(2fc+l) TT2 \ 2k +

Case 3. Suppose that 0k < n/2 < 6k+i- Then (9k + 9k+l)/2 = TT/2. SO

1 1 2
£̂  ^ — sin ^ ^ - sin TT/4 ^ —- .

Thus, in any case, E ^ 2/(3TT2) . D

LEMMA 5 . Ifme { 1 , 3 , 5 , . . . } and p € {3,4, 5 , . . . }, then there is a polynomial

Rp(x)(= RP,mix)) such that Il-Rpll < 2 and

(yx e [-cos(7r/p),cos(7r/p)]) (3n > p) ( ^ ( i ^ z ) ! > p) .

PROOF: Let q be a fixed natural number: during the course of proving this lemma,
q will be specified to be sufficiently large so that certain conditions are satisfied. To begin
with, suppose that q > p.

We define the sets Sn := {zi,n,^2,n,-• • >xntn}, as in Lemma 1, and

(4) S n (a) :=S n n[ - l , cosa] .

By part (i) of Lemma 1, Sn fl Sn+i = 0 (that is, consecutive rows of the matrix of nodes

T in (1) have no common elements).

Now we shall construct a sequence of q — 1 indices

9 = ni < n2 < . . . < ",7-1
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and begin the construction of a function cj>: [—1,1] —> [—1,1].

Let ni = q. Define <j> on 5 n , U Sn i + i by

[(-I)*"1 ifit,nie5Bl(7r/9)

and

z*,n,+i -

We now find another pair of consecutive rows of the matrix T which has almost
nothing in common with the first pair of rows. To this end, let

5 = 5 n i U S n i + 1

and we apply part (ii) of Lemma 1. Thus, there is n2 > nt such that

S n (Sn2 u 5n2+1) = (5 n snt) u (5 n 5n2+1) = {o}.

We now define <j> at all points of Sn2 U Sn2+i (with the possible exception of 0 in case it
has been defined there already):

and

"2+ " ( ( - I ) * " 1 if z*,n2+i € 5n2+1(27r/9).

We have now defined the two indices q = nj < n2, and defined <f> on

(5B1 U 5 n i + 1 ) u ( 5 n 2 u S n 2 + 1 ) .

We continue this process and generate n3,ni,... ,n,_i as follows. Suppose that i < q
and that we have determined

nltn2,. • • ,7i i_i .

By virtue of part (ii) of Lemma 1, we can choose n, > rij_i so that the set Sn, U 5n, + i
has no point (or at most the point {0}) in common with the set

i - l

(J(Sn4USnt+1).
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We now define </> on the set 5n< U Sni+i (except at 0 if it has been defined there already):

Xxk,nteSni\Snt{in/q)

and

, s _ f 0 if Z M . + I € 5n i + i \ Sni+i{in/q)
- ^(_1) fc_i i f x t n i + i 6 5 n j + l ( i f f / g ) .

In this way, we generate q — 1 indices <? = 7ii < n2 < . . . < n,_i and define the function
4> on all points of the set

• 7 - 1

(5) rp = (J(Sn,USnj+1).
«=i

This set obviously depends on q: but we shall show at the very end of the proof that q
is a function of p and hence we denote the set by rp.

Finally we extend the domain of <j> and define 4> throughout the interval [—1,1] by
requiring that

(i) 0(+l) = 0 ( - l ) = O ,

(ii) once all the nodes in rv have been ordered, the function <j> should be mono-
tonic between consecutive nodes — but not necessarily strictly monotonic,
and

(iii) <{> e Cm-l[-l, 1] and (V* e TP) (1 < j ^ m - 1 =• 4>{j\t) = 0).

Thus, we have <t> € C(m~l)[-l, 1] and ||0|| ̂  1. By Lemma 3, there exists a polyno-

mial R such that

(i) (Vie r p ) (*(*)=*(«)) ,

(ii) (Vt e Tp) (1 ^ j ^ m - 1 =• # % ) = 0), and

(iii) \\R - <j>\\^ 1 and hence ||i?|| ^ 2.

Hence R satisfies the first requirement in the statement of the lemma: it remains to show
that R satisfies the second requirement in the lemma.

Assume that x is fixed and x & [— cos(7r/p),cos(7r/p)]. If x = cos 6 and 0 ̂  6 ̂  i\

then 6 € [vr/p, w-n/p}. Then, because q > p, we can choose an index i 6 {2 ,3 , . . . , g - l }
so that

(6) (i - l)?r/9 ^ 0 < iw/g.

By virtue of (5), corresponding to the index i, is an index rij. Clearly

(7) p < q ̂  n* ^ n,_i + 1.
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We shall now show that either HmiJli(R,x) or Hmini+i(R,x) satisfies the second condition
rii

of the lemma. We consider these one at a time. HmiTli(R,x) — £) R(zk,ni)Aokni(x) =

k=l
Define r̂

(8)

Therefore

:= min{/c : 8k:Ui ^ in/q}, or equivalently,

•ii,m 6 Sni(iTr/q) <*in/q

k=n

There are two cases to consider arising from the possibility of 0 e Sn, and <f>(0)
having been defined earlier.

Case 1. If either 0 £ 5 n i or 0 € Sni and for all 1 ̂  j < i, 0 & Snj, then

Case 2. If 0 € Sni and for 1 ^ j < i we had 0 € Snj then 0(0) would have been
defined to be 0,1 or —1 before considering Sni- So, for some index u we have

In either case, by Lemma 2, we have

(9) Hmm(R,x) =

where 0(1) depends only on m.

We now use some ideas from Szabados [11, pp.359-360]. Remember that, here,

Xk - Zit.n,. and 0k = 6k>ni.

(-1) >lofcnj(a;) = — 2^TZZZ2— a im ^°*«.<

where

Xk ~
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with only one of the signs in k± 1 applying in any term. Note that by (6), (8) 9 < iir/q ^

9k. So we have:

k=T,

(10) > c2

sin 6^ (

rii f-" (cos9 - cos9k) \rii(cos9k -

\cosnid\m-^ sin9k

—* (cos 9 — cos 9k)'

the last step following from Lemma 4 and 0 < (cos0 - cos9k)
m~l < 2m~K

At this point we can follow Natanson [7, pp. 41-43] exactly. For completeness we

reproduce his calculations.

For fixed 9, the function (sint)/(cos# - cost) is decreasing for t e {9,ix) since its

derivative is
cosflcosi - 1

< 0.(cos# - cost)2

Remember that we write 9k for 9kiUi- For 9 < 9k < t < 9k+i < 7r we have

sin 9k sin t
cos 9 - cos 9k cos 9 - cos t'

For A: = Tj, r-j + 1 , . . . , n{ - 1, we have 6 < 9k < 9k+i < IT, and hence

Also,

Therefore,

7r s i n ^ r°k+' sint
rij cos 9 - cos 0/t JOk cos ^ - cos t

7T sin 9n f" sin t! > / dt.
2rii cos 9 — cos Bnt Jgn cos 0 - cos t

sin 9k f* sin t
J 9 tcos ^ — cos 9k Jg cos 9 — cos tJg

1 y , sm6k 1 l n 1+cosg
rij - ^ cos 0 — cos flu 7r cos 0 — cos 9Ti

Now recall that 7r/p ^ 9 ^ TT - ?r/p. So

(12) 1 + cos^ ^ 1 - cosn/p.

On the other hand,

(13) 0

https://doi.org/10.1017/S0004972700019353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019353


[11] On the Griinwald-Marcinkiewicz theorem 309

Recall that

rt = min< k : 1 ^ k ^ nu — ^ -— >.
I q 2rii J

So

(14) Q ^ ^ - ^ - J l ^ i L ^ * .
2ni q Ui q

Also, by (6),

(15) iir/q-9 ^n/q.

Therefore, by (13), (14), (15),

(16)

So, by (10), (11), (12) and (16),

0 < cos0 - cos#r. ^ —.
9

C3I COS7lj6

Similarly we could have obtained

t=r,

( l - cos (7 r /p ) ) g \
2?r

Since n/p ^ 6 ^ ir - •n/p and p > 2 it follows that s\nQ ^ sin(7r/p) ^ 2/p. This,
together with sin 9 = sin(n +1)0 cos n6 — sin nO cos(n + 1)6, leads to

2/p ^ sin6 |cos(ni + \)0\.

Thus, either |cosn^ | ^ 1/p (in which case define n := rn) or |cos(nj + 1)0| ^ 1/p (in

which case define n :— n* + 1). So, with the appropriate definition of n we have

(17)

Now m and p may be regarded as fixed. By (17) we can choose q large enough so
that

1 A
A0kn

could be made arbitrarily large. Hence, by recalling (9) we can choose <?(> p) to be the
smallest natural number such that \Hm,n(R, x)\ > p and this completes the proof of the
Lemma. D

REMARK. The last sentence in the above proof ensures that q is determined uniquely by

V-
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5. P R O O F OF THEOREM 2 IN (-1,1)

In this section we prove Theorem 2 only for x in the open interval ( — 1,1).

Assume that the matrix of nodes is given by T as in (1) and that m e {1,3 ,5 , . . . }.

By (3), we define the Lebesgue constant associated with the operator Hm<n by

(18) An :=

So, if 9 6 C [ - l , 1], x e [-1,1] and n € Z + , then

(19) \Hmin{g,x)\^\n\\g\\.

We shall define a function / which will prove to be the function mentioned in the
statement of Theorem 2 (at least for (-1,1)). For each p 6 {3 ,4 ,5 , . . . } , construct a
polynomial Rp in accordance with Lemma 5 and let r(p) := degree Rp. For each x €
[—cos(7r/p),cos(7r/p)j, let n(x,p) > p be an index such that \Hm^XiP)(Rp,x)\ > p. The
existence of n(x,p) is assured by Lemma 5. By (7)

(20) p < n(x, p) ^ n,_! + 1 =: N{p)

(since q is a function of p). Choose an infinite sequence {pi,P2, • • • } of natural numbers
such that

Pi = 3
Pfc+i > max{mr(pi)

2m-1 : 1 < i ^ k}

Pk+i > Pi
p k + l > max{A^,A^ + 1 ) . . . ,A^(pfc )}.

Finally, define / : [-1,1] -> R by

(22) f{x) :=
*=i v ™

It remains to show that / has the required properties.

It will be useful to define the quantity

00 2
(23) 5 := ]T

From the third condition in (21), it follows that 5 is finite. Now observe that the series
in (22) is absolutely convergent because, by Lemma 5 and (23)
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Thus / , as given by (22), is a well denned element of C [ - l , 1].

Now let x0 € (-1,1) and K > 0. We must find a number n such that \Hmin(f,x0)\

> K.

Since xo € (—1,1), we can choose t to be so large that

•n •n

(24) - cos — < x0 < cos —.

Pt Pt

Let n = n(xo,pt). Then, by (22), we can write

t—1 n / \ o f \ OO f\ / \

(25) =A(x) + ̂ ^-+B(x), say.

To see the effect of the linear operator Hmin on / , we shall examine its effect on each of
the three terms on the right hand side of (25) one at a time.

If we consider the third term in (25), then by (19), Lemma 5, (21) and (23) we obtain

\Hmtn(B,x)\^Xn\\B\\
00 2

2 ^ 2

+i

. 2 ^ 2

An (2 + S)

So, by (20) and (21),

(26) \Hmtn(B,x0)\<2

If we consider the first term in (25), we obtain

t-i

(27) Hnjn(A,x) =

By (3)

Hm<n{Rpk,x) =

Now (7) and (21) imply that

n = n(xo,pt) >pt> max{r(pi),r(p2),
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and hence mn — 1 > max{r(pi),r(p2), •• • , r(Pt-i)}- So, for 1 ̂  k ^ t - 1
m—1 n

and therefore

Using Markov's inequality, Szabados [11, Theorem 2], (21) and \\Rpk\\ ^ 2 we obtain, for
1 sC k ^ i - 1,

t - i

This inequality, (27) and (23) imply that

(28) |^m.n(>4,a;o)| ^ ^2^/y/Pk ^ 25.
fc=i

Finally we consider the second term in (25) which, as we shall see, is the dominant
term. By the definition of n := n(xo,pt),

(29) vr
and, according to (24), we can make pt as large as we please if x0 is in the open interval

(-1,1)-
From (25), (26), (28) and (29), it follows that for any K > 0 we can find n such that

|#m,n(/.zo)| > K. Therefore, we have shown that, for allx € (-1,1),

(30) limsup|Hm,n(/,i)| = +oo.
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6. P R O O F OF THEOREM 2 IN [-1,1]

In this section we shall complete the proof of Theorem 2. We employ the general ap-

proach suggested by Griinwald [5] and Marcinkiewicz [6] and supplement it with technical

results from Szabados [11].

As before, we assume that m € {1 ,3 ,5 , . . . } is fixed.

In the previous section, we have shown that the function / £ C([—1,1]) as defined
in (22) satisfies (30). There are four cases to be considered.

CASE 1: If (30) holds for all x e [-1,1] then we have proved Theorem 2 completely.

CASE 2: If (30) holds for all x € [-1,1) but not for x = 1, then we proceed as follows.
Construct a function ip such that, for all i € [—1,1) the sequence {Hmn(ip,x) : n =
1,2,3,. . . } is bounded, but the sequence {Hmin(ip, +1) : n = 1,2,3,. . . } is unbounded.
Then the sequence {Hmn(f + ip,x) : n = 1,2,3,. . . } diverges for all x € [—1,1] and we
have proved Theorem 2 completely.

CASE 3: If (30) holds for all a; £ ( —1,1] but not for x = —1 then we proceed in a manner
similar to that used in Case 2.

CASE 4: If (30) holds for all x € (-1,1) but not for x = ±1 then we combine the
approaches in Case 2 and Case 3.

So it suffices to consider Case 2. To this end we shall construct a function ip e

C([ - l , l ] ) such that

(31) (Vz € [-1,1)) ({tfm,n«>, i ) : n = 1,2,3,. . . } is bounded)

and

(32) l imsup|#m,n(^, 1)| = +oo.

The following subsections are devoted to defining ip and proving that rp satisfies (31)
and (32).

STEP 1. Firstly, we construct the function ip. We shall need an infinite sequence of

natural numbers n\ < n^ < n^ < ... which increase sufficiently rapidly for our purposes.

We shall require that if

[log rij 7T

and
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then

(33) x k i } T l i < xKi+1,ni+i ( i = 1 , 2 , 3 , . . . ) .

(To construct such a sequence, we could choose ri\ = 10, ki = \,K\ = 3. Once we have

chosen n i , n 2 , . . . , n^ we can choose nj + 1 to ensure that (33) is satisfied.)

Note that if

Ii = [xKi,ni,xkuni] (t = 1 ,2 ,3 , . . . )

then Ii PI Ij = 0 whenever i ^ j .

Later we shall demand that the sequence {n i ,n 2 l n 3 , . . . } satisfies other conditions
as well — but these will serve only to force the sequence to diverge more rapidly.

For each index i ^ 1, define the function tpi : [—1,1] -* [—1,1] which satisfies the
following four conditions. First,

{0 if k < ki

(-1)*"1 if ki + 1 ^ k < Ki - 1

0 if k > K^
Second,
(34) xgli=> ipi(x) := 0.
Third, H îll ^ 1- Fourth, for some constant Mi > 0, i}\~ G LipM.l.

Recall the definition of the Lebesgue constants An (n = 1,2,3,...) in (18). Define

{1 if z = 0

max{Ani,An21... ,An,} if z ^ 1.

Now define the function ip : [— 1,1] —> R by

(36) rp(x) :=

We know from Szabados [11, Theorems 1, 2] that An ~ logn (as n -> oo). So we can
choose our sequence n\ < n2 < n3 < . . . to ensure that

—<2

Hence

tr
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S T E P 2. Having defined the function ip, our next step is to prove that ip satisfies (31).

Let i 0 G [-1,1).

Define Jo := Io = [-l,xKuni) and, for i ^ 1, J, := [ztf,,ni,z/ej+linj+1). From the
construction of the intervals /* and this definition, it follows that 0 ^ i < j => Jj n J,; = 0

oo

and that [—1,1) = U Ji- Thus the intervals {Jo , «A, -^2, • • • } partition the interval (—1,1).
i=0

Therefore, (3!s ^ 0)(z0 G Ja). Hence we write

(37) 1>(x) = 2 ^ ̂  _
i=i l pi~l ~ \ '"W-1 i=s+\ - " - *

(If s - 0 then <ps = 0.)

Since T/'1'"
1'"1) G Lipw.l (1 ^ i < s) we have </>s ~ G LipM, 1 for some positive

constant M^. Therefore by [3, Theorem 4.8, p. 251] there exists c5 ^ 0 such that for
all n G N there is a polynomial Rn = Rn{<f>s) of degree at most n such that for all
x = cos0G [-1,1] and for a l l t € {0 ,1 ,2 , . . . ,m - 1} we have

/ • Q \ T71 — t

(38) '"

Also

(39)

We now estimate \HmtTl(<ps,x0) - 4>s(x0)\ using (38) and the fact that the higher
order Hermite interpolation operator reproduces polynomials of the appropriate degree.

= Hmtn(<ps,Xo) - (#m,n
771—1 n

t = l fc=l

m - 1 n

t=l fc=l

Therefore

\Hm,n{(j)a,xo) -4>,{xo)\
m—l n

< \Hm,n{<t>, ~ fln-i,*o)| +
t = l fc=l

(40) =s 1 ( io ) + S2(xo)+s3(io) say.

We now estimate each of S\{xQ), S2(x0), s3(x0) in turn.

https://doi.org/10.1017/S0004972700019353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019353


316 T.M. Mills and P. Vertesi [18]

To estimate Si(z0) we use (38) and [11, p. 367, (27), (28)]. In the calculation which

follows, the 0(1) term may depend on s and hence on XQ. Also, the index jo is defined

by

1*0 -Xjo,n\ = min{|x0 - xk>n\ : k = 1, 2 , . . . , n } .

Si(x0) =

fc=l
n

k=\

(41) = 0(l)n~mlogn as n ->• oo.

To estimate s2(x0) we again call on [11, p. 367, (27), (28)] and use the fact that if
1 < t ^ m — 1 then

= O(D|^fii(*)| < K>,(*) - ^J(*)| + Itf'Wl = 0(1)

where 0(1) may depend on s and hence x0. Therefore

m - l n

1=1 t=l
( odd

m— 1 n

1=1
t even

m—1 n m—1 n

(=1 A = l
t odd

<
( odd

* = i

t odd
m - l

+0(1) T,

= O(l)n~1 + O(l)n-2 logn

(42) = O(l)n~l a s n - > oo.

To estimate s3(x0) we use (38) to obtain

(43) s3(zo) = \Rn-i(x0) - <t>s{x0)\ = O ( l ) n - m as n -> oo.
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Remembering that x0, s are fixed and (39), and using (41), (42), (43) in (40), we

obtain

\Hm,n{<ps,x0)\ ^ \<f>s{x0)\ + \Hmtn(<f>s,x0) - 4>s(xQ)\

^ 2 + O(l)(n-m logn + n-1 + n~m)

(44) ^ 3 if n is sufficiently large.

Next we estimate Hmtn(Ts,x0) where T, is defined in (37). Obviously Hmin(Ts,x0) =
n

12 Ts(xk,n)Aakn(xo); hence, to calculate HmiTt(Ts,x0) requires Ts(xkin) which, in turn,

requires ipi{xk,n) (i ^ s + 1) by (37).

Notice that, by (34), (^(x*,n) / 0) ^ ( i e Ii). Therefore, if for some i ^ s+ 1

we have Vt(z*,n) ^ ° t n e n ^M € A; that is iK i ,n . ^ !*,„ ^ xAi,nj and hence xkiT1 - x0 ^

i(f1+l i»l t , - x0 := <J(x0) > 0. Define y, := X7fJ+i,nJ+l- Then we have shown that

This allows us to write \Hmtn(rs,x0)\ < 2 J2 |̂ OA:n(xo)| • We use Szabados [11, p. 367,

(27)].

|#m,n(Ts,X0)| ^ 2

1

= O(l)6(x0)-
m

(45) = 0(1) where, again, 0(1) depends on xo-

Recalling (37), (44) and (45), we get, a s n - » oo,

\Hm,n{t,X0)\ = \Hm,n(<t>s,X0) + Hm,n(Ta,X0)\ < |^m,n(^5, X0) | + |//m,n(rs, X0) | =

Hence xjj satisfies (31).

STEP 3. The final step is to prove that ip satisfies (32). We prove that the sequence

{# m , n > (^ ,+l ) : j € Z + } is unbounded.

Let j ^ 1. Then
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(46)

rj

= ti + t2 + t3 say.

Hmn (ML \\+Hnn (y ML A

We proceed to estimate each of tx, t2 and t3.

First we estimate t\. If we use precisely the same argument which led to (44) then
we would obtain

(47) 3 if j were sufficiently large.

Next we estimate (3. From (35) we know that pj ^ pj+x < pj+2 ^ . . . , and \nj

j . Therefore

(48) |ts | =

tr
Finally we estimate t2 which will turn out to be the dominant term in (46). Observe

that, from Szabados [11, (7), (12)] it follows that, for 1 < k ^ n, sgnA0A:n(l) = (-1)*"1-
Therefore, using Szabados [11, Corollary on p. 363] and letting c denote various positive
constants independent of k, n, we find that for 1 ^ k ^ n,

= \Aokn(l)\

c sin6k

Tl 1

-xk)\xk -

= cos9k)

• cos 9k

= en ' i / l + cos 6k •

We now apply this observation to estimating t2.

Kj-1

*=*,
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Kj-\
c v ^ \A + c o s Ok

> Tj Y"* ^ * *°r J sufficiently large

Now assume that the sequence {n1,n2,n3,... } is diverging sufficiently quickly to
ensure that lim Dj = oo. Therefore we have

j—»oo

(49) t2 ^ A and lim £>, = oo.
J-+0O

If we apply the estimates (47), (49) and (48) to (46) we obtain

|#7/1,71, W>. 1) | > Dj - 3 - TT2/6 if j were sufficiently large.

Therefore \imsup\Hminj(tp, 1)| = +oo and we have proved that equation (32) is satisfied.
n—foo

This completes the proof of Theorem 2.
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