Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T17:52:44.672Z Has data issue: false hasContentIssue false

An Egerev's theorem for vector functions

Published online by Cambridge University Press:  17 April 2009

P. Jimenez Guerra
Affiliation:
Departmento de Teoria de Functiones, Facultad de Ciencias Matematicas, Ciudad Universitaria, Madrid 3, Spain.
Jose L. de Maria Gonzalez
Affiliation:
Departmento de Teoria de Functiones, Facultad de Ciencias Matematicas, Ciudad Universitaria, Madrid 3, Spain.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper some results of Egorov's theorem type are given for functions with values in locally convex spaces and Riesz's theorem is proved for functions taking values in a sequentially complete locally convex space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Bartle, R.G., “An extension of Egorov's theorem”, Amer. Math. Monthly 87 (1980), 628633.CrossRefGoogle Scholar
[2]Bartle, R.G., “Properties equivalent to almost uniform convergence”, Proceedings Conference Northern Illinois University, 155160 (Northern Illinois University, DeKalb, Illinois, 1980).Google Scholar
[3]Blondia, C., “Badon-Nikodym theorem for vector valued measures”, Bull. Soc. Math. Belg. Ser. B 23 (1981), 231249.Google Scholar
[4]Blondia, C., “Integration in locally convex spaces”, Simon Stevin 55 (1981), 81102.Google Scholar
[5]Chi, G.Y., “On the Radon-Nikodym theorem in locally convex spaces”, Measure theory, 199209 (Proc. Conf. Oberwolfach, 1975. Lecture Notes in Mathematics, 541. Springer-Verlag, Berlin, Heidelberg, New York, 1976).CrossRefGoogle Scholar
[6]Dobrakov, , “On integration in Banach spaces, I”, Czechoslovak Math. J. 20 (1970), 511536.CrossRefGoogle Scholar
[7]Dobrakov, , “On integration in Banach spaces, II”, Czechoslovak Math. J. 20 (1970), 680695.CrossRefGoogle Scholar
[8]Dunford, Nelson and Schwartz, Jacob T., Linear operators, Part II (Interscience [John Wiley & Sons], New York, London, 1963).Google Scholar
[9]Gilliam, , “On integration and the Badon-Nikodym theorem in quasi complete locally convex topological vector spaces”, J. Reine Angew. Math. 292 (1977), 125137.Google Scholar
[10]de Maria Gonzalez, Jose L., “A characterization theorem for locally convex space valued functions”, Illinois J. Math. 28 (1984), 592596.Google Scholar
[11]de María Gonzalez, José L., “Un théorème de Marczewski-Sikorski pour les espaces LF”, Actualités Mathématiques, 407410 (Gauthier-Villars, Paris, 1982).Google Scholar
[12]de Maria Gonzalez, Jose L., “Extensiones al teorema de Egorov” (Tesis Doctoral. Universidad Complutense de Madrid, Madrid, 1981).Google Scholar
[13]Rodriguez-Salinas, B., “Integracion de funciones con valores en un espacio localmente convexo”, Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid 63 (1979), 361387.Google Scholar
[14]Stone, A.A., “Topology and measure”, Measure theory, 4348 (Proc. Conf. Oberwolfach, 1975. Lecture Notes in Mathematics, 541. Springer-Verlag, Berlin, Heidelberg, New York, 1976).CrossRefGoogle Scholar