No CrossRef data available.
Article contents
ON QUOTIENTS OF VALUES OF EULER’S FUNCTION ON FACTORIALS
Published online by Cambridge University Press: 17 November 2021
Abstract
We investigate, for given positive integers a and b, the least positive integer $c=c(a,b)$ such that the quotient $\varphi (c!\kern-1.2pt)/\varphi (a!\kern-1.2pt)\varphi (b!\kern-1.2pt)$ is an integer. We derive results on the limit of $c(a,b)/(a+b)$ as a and b tend to infinity and show that $c(a,b)>a+b$ for all pairs of positive integers $(a,b)$ , with the exception of a set of density zero.
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.