Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-27T05:22:38.726Z Has data issue: false hasContentIssue false

NADPH-cytochrome P450 reductase involved in the lambda-cyhalothrin susceptibility on the green mirid bug Apolygus lucorum

Published online by Cambridge University Press:  02 October 2024

Congai Zhen
Affiliation:
Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
Rui Wu
Affiliation:
Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
Yao Tan*
Affiliation:
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
Ansheng Zhang
Affiliation:
Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan 250100, China
Lei Zhang*
Affiliation:
Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
*
Corresponding authors: Lei Zhang; Email: [email protected]; Yao Tan; Email: [email protected]
Corresponding authors: Lei Zhang; Email: [email protected]; Yao Tan; Email: [email protected]

Abstract

NADPH-cytochrome P450 reductase (CPR) is crucial for the detoxification process catalysed by cytochrome P450, which targets various exogenous xenobiotics, as well as pesticides. In our research, we successfully obtained the complete cDNA sequence of Apolygus lucorum's CPR (AlCPR) using reverse transcription PCR along with rapid amplification of cDNA ends technology. Bioinformatics analysis exhibited that the inferred amino acid sequence of AlCPR is characteristic of standard CPRs, featuring an N-terminal membrane anchor and three conserved FMN, FAD and NADP binding sites. Phylogenetic result revealed that AlCPR was positioned within the Hemiptera cluster, showing a close evolutionary relationship with the CPR of Cimex lectularius. The real-time quantitative PCR results demonstrated widespread expression of AlCPR across various life stages and tissues of A. lucorum, with the most prominent expression in adults and the abdominal region. Injecting double-stranded RNA of AlCPR only significantly increased the lambda-cyhalothrin susceptibility in lambda-cyhalothrin-resistant strain rather than the susceptible strain. These findings suggest a potential link between AlCPR and the P450-dependent defence mechanism against lambda-cyhalothrin in A. lucorum.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

These authors have contributed equally to this work.

References

Adesanya, AW, Cardenas, A, Lavine, MD, Walsh, DB, Lavine, LC and Zhu, F (2020) RNA interference of NADPH-cytochrome P450 reductase increases susceptibilities to multiple acaricides in Tetranychus urticae. Pesticide Biochemistry and Physiology 165, 104550.CrossRefGoogle ScholarPubMed
Chen, XE and Zhang, YL (2015) Identification and characterization of NADPH dependent cytochrome P450 reductase gene and cytochrome b5 gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin. Gene 558, 208214.CrossRefGoogle ScholarPubMed
Ding, Z, Wen, Y, Yang, B, Zhang, Y, Liu, S, Liu, Z and Han, Z (2013) Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1. Insect Biochemistry Molecular Biology 43, 10211027.CrossRefGoogle ScholarPubMed
Elzaki, MEA, Miah, MA, Wu, M, Zhang, HJ, Jiang, L and Han, Z (2017) Imidacloprid is degraded by CYP353D1v2, a cytochrome P450 overexpressed in a resistant strain of Laodelphax striatellus. Pest Management Science 73, 13581363.CrossRefGoogle Scholar
Feyereisen, R (1999) Insect P450 enzymes. Annual Review Entomology 44, 507533.CrossRefGoogle ScholarPubMed
He, C, Liang, JJ, Liu, SN, Zeng, Y, Wang, SL, Wu, QJ, Xie, W and Zhang, YJ (2020) Molecular characterization of an NADPH cytochrome P450 reductase from Bemisia tabaci Q: potential involvement in susceptibility to imidacloprid. Pesticide Biochemistry and Physiology 162, 2935.CrossRefGoogle ScholarPubMed
Huang, Y, Lu, XP, Wang, LL, Wei, D, Feng, ZJ, Zhang, Q, Xiao, LF, Dou, W and Wang, JJ (2015) Functional characterization of NADPH-cytochrome P450 reductase from Bactrocera dorsalis: possible involvement in susceptibility to malathion. Scientific Reports 5, 18394.CrossRefGoogle ScholarPubMed
Huang, Y, Liao, M, Yang, QQ, Shi, S, Xiao, JJ and Cao, HQ (2020) Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. Pesticide Biochemistry and Physiology 162, 1522.CrossRefGoogle ScholarPubMed
Ji, HY, Staehelin, C, Jiang, YP, Liu, SW, Ma, ZH, Su, YJ, Zhang, JE and Wang, RL (2019) Tobacco cutworm (Spodoptera Litura) larvae silenced in the NADPH-cytochrome P450 reductase gene show increased susceptibility to phoxim. International Journal of Molecular Science 20, 3839.CrossRefGoogle ScholarPubMed
Jing, TX, Tan, Y, Ding, BY, Dou, W, Wei, DD and Wang, JJ (2018) NADPH–cytochrome P450 reductase mediates the resistance of Aphis (Toxoptera) citricidus (Kirkaldy) to abamectin. Frontiers in Physiology 9, 986.CrossRefGoogle Scholar
Laursen, T, Jensen, K and Møller, BL (2011) Conformational changes of the NADPH dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450. Biochimica et Biophysica Acta-Proteins and Proteomics 1814, 132138.CrossRefGoogle ScholarPubMed
Li, X, Deng, Z and Chen, X (2021) Regulation of insect P450s in response to phytochemicals. Current Opinion in Insect Science 43, 108116.CrossRefGoogle ScholarPubMed
Liu, NN (2015) Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annual Review of Entomology 60, 537559.CrossRefGoogle ScholarPubMed
Liu, S, Liang, QM, Zhou, WW, Jiang, YD, Zhu, QZ, Yu, H, Zhang, CX, Gurra, GM and Zhu, ZR (2015a) RNA interference of NADPH–cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides. Pest Management Science 71, 3239.CrossRefGoogle ScholarPubMed
Liu, N, Li, M, Gong, YH, Liu, F and Li, T (2015b) Cytochrome P450s – their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology 120, 7781.CrossRefGoogle ScholarPubMed
Livak, KJ and Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25, 402408.CrossRefGoogle ScholarPubMed
Lu, YH, Wu, KM, Jiang, Y, Xia, B, Li, P, Feng, HQ, Wyckhuys, KAG and Guo, YY (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 11511154.CrossRefGoogle ScholarPubMed
Lu, YH, Wyckhuys, KAG and Wu, KM (2024) Pest status, bio-ecology, and area-wide management of Mirids in East Asia. Annual Review of Entomology 69, 393413.CrossRefGoogle ScholarPubMed
Luo, J, Wang, AL, Cheng, YX, Rong, HL, Guo, LB, Peng, Y and Xu, LT (2020) Selection and validation of suitable reference genes for RT-qPCR analysis in Apolygus lucorum (Hemiptera: Miridae). Journal of Economic Entomology 113, 451460.CrossRefGoogle ScholarPubMed
Lycett, GJ, McLaughlin, LA, Ranson, H, Hemingway, J, Kafatos, FC, Loukeris, TG and Paine, MJI (2006) Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Molecular Biology 15, 321327.CrossRefGoogle ScholarPubMed
Nauen, R, Bass, C, Feyereisen, R and Vontas, J (2022) The role of cytochrome P450s in insect toxicology and resistance. Annual Review Entomology 67, 105124.CrossRefGoogle ScholarPubMed
Paine, MJI, Scrutton, NS, Munro, AW, Gutierrez, A, Roberts, GCK and Wolf, CR (2005) Electron transfer partners of cytochrome P450. In Ortiz de Montellano, PR (ed.), Cytochrome P450. New York, NY: Springer, pp. 115148.CrossRefGoogle Scholar
Pandey, AV, Kempna, P, Hofer, G, Mullis, PE and Fluck, CE (2007) Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase. Molecular Endocrinology 21, 25792595.CrossRefGoogle ScholarPubMed
Panini, M, Manicardi, GC, Moores, GD and Mazzoni, E (2016) An overview of the main pathways of metabolic resistance in insects. ISJ-Invertebrate Survival Journal 13, 326335.Google Scholar
Qiao, JW, Fan, YL, Wu, BJ, Bai, TT, Wang, YH, Zhang, ZF, Wang, D and Liu, TX (2022) Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides. Insect Science 29, 11051119.CrossRefGoogle ScholarPubMed
Scott, JG (2019) Life and death at the voltage-sensitive sodium channel: evolution in response to insecticide use. Annual Review of Entomology 64, 243257.CrossRefGoogle ScholarPubMed
Shi, L, Zhang, J, Shen, G, Xu, Z, Wei, P, Zhang, YC, Xu, Q and He, L (2015) Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval). Scientific Reports 5, 1558115581.CrossRefGoogle ScholarPubMed
Shi, L, Li, WL, Dong, YT, Shi, Y, Zhou, YL and Liao, XL (2021) NADPH-cytochrome P450 reductase potentially involved in indoxacarb resistance in Spodoptera litura. Pesticide Biochemistry and Physiology 173, 104775.CrossRefGoogle ScholarPubMed
Smith, LB, Kasai, S and Scott, JG (2016) Pyrethroid resistance in Aedes aegypti and Aedes albopictus: important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology 133, 112.CrossRefGoogle ScholarPubMed
Soderlund, DM and Knipple, DC (2003) The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry Molecular Biology 33, 563577.CrossRefGoogle ScholarPubMed
Tamura, K, Stecher, G, Peterson, D, Filipski, A and Kumar, S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
Tan, Y, Biondi, A, Desneux, N and Gao, XW (2012) Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum Meyer-Dür. Ecotoxicology 21, 19891997.CrossRefGoogle ScholarPubMed
Tang, T, Zhao, C, Feng, X, Liu, X and Qiu, L (2012) Knockdown of several components of cytochrome P450 enzyme systems by RNA interference enhances the susceptibility of Helicoverpa armigera to fenvalerate. Pest Management Science 68, 15011511.CrossRefGoogle ScholarPubMed
Tang, QL, Li, XC, He, YP and Ma, KS (2023) RNA interference of NADPH-cytochrome P450 reductase increases the susceptibility of Aphis gossypii Glover to sulfoxaflor. Comparative Biochemistry and Physiology, Part C 274, 109745.Google ScholarPubMed
Wang, M, Roberts, DL, Paschke, R, Shea, TM, Masters, BSS and Kim, JJP (1997) Three dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proceedings of the National Academy of Sciences of the United States of America 94, 84118416.CrossRefGoogle ScholarPubMed
Wang, LK, Lin, LY, Wang, H, Duan, WB, Li, F, Zhang, K, Cao, P, Yuchi, ZG and Wu, SY (2020) Two classic mutations in the linker-helix IIL45 and segment IIS6 of Apolygus lucorum sodium channel confer pyrethroid resistance. Pest Management Science 1002, 5944.Google Scholar
Wu, YQ, Xu, HF, Pan, YO, Gao, XW, Xi, JH, Zhang, JH and Shang, QL (2018) Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii Glover. Pesticide Biochemistry and Physiology 149, 17.CrossRefGoogle ScholarPubMed
Wu, SY, Deng, DH, Jiang, W, Zhang, K, Guo, JL, Duan, WB and Wang, H (2019) Genome analysis of cytochrome in dinotefuran-treated Apolygus lucorum (Meyer-Dür). Bulletin of Environmental Contamination and Toxicology 103, 106113.CrossRefGoogle ScholarPubMed
Yuan, CY, Jing, TX, Li, W, Liu, XQ, Liu, TY, Liu, Y, Chen, ML, Jiang, RX, Yuan, GR, Dou, W and Wang, JJ (2021) NADPH-cytochrome P450 reductase mediates the susceptibility of Asian citrus psyllid Diaphorina citri to imidacloprid and thiamethoxam. Pest Management Science 77, 677685.CrossRefGoogle ScholarPubMed
Zhang, YL, Wang, YM, Wang, LH, Yao, J, Guo, HF and Fang, JC (2016) Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallen). Pesticide Biochemistry and Physiology 127, 2127.CrossRefGoogle ScholarPubMed
Zhang, XY, Wang, JX, Liu, J, Li, YH, Liu, XJ, Wu, HH, Ma, EB and Zhang, JZ (2017) Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, Locusta migratoria. Chemosphere 188, 517524.CrossRefGoogle ScholarPubMed
Zhang, YX, Li, SG, Rao, XJ and Liu, S (2018) Molecular characterization of a NADPH–cytochrome P450 reductase gene from the rice leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Applied Entomology and Zoology 53, 1927.CrossRefGoogle Scholar
Zhao, CQ, Tang, T, Feng, XY and Qiu, LH (2014) Cloning and characterisation of NADPH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera. Pest Management Science 70, 130139.CrossRefGoogle ScholarPubMed
Zhao, C, Feng, X, Tang, T and Qiu, L (2015) Isolation and expression analysis of CYP9A11 and cytochrome P450 reductase gene in the beet armyworm (Lepidoptera: Noctuidae). Journal of Insect Science 15, 122.CrossRefGoogle ScholarPubMed
Zhen, CA and Gao, XW (2016) A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer-Dür) population from the transgenic Bt cotton field of China. Pesticide Biochemistry and Physiology 127, 8289.CrossRefGoogle ScholarPubMed
Zhen, CA, Miao, L, Liang, P and Gao, XW (2016) Survey of organophosphate resistance and an A1a216Ser substitution of acetylcholinesterase-1 gene associated with chlorpyrifos resistance in Apolygus lucorum (Meyer-Dür) collected from the transgenic Bt cotton fields in China. Pesticide Biochemistry and Physiology 132, 2937.CrossRefGoogle Scholar
Zhen, CA, Tan, Y, Miao, L, Wu, J and Gao, XW (2018) Overexpression of cytochrome P450s in a lambda-cyhalothrin resistant population of Apolygus lucorum (Meyer-Dür). PLoS ONE 13, e0198671.CrossRefGoogle Scholar
Zhu, F, Sams, S, Moural, T, Haynes, KF, Potter, MF and Palli, SR (2012) RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLoS ONE 7, e31037.CrossRefGoogle ScholarPubMed
Zhu, QY, Yang, Y, Zhong, YY, Lao, ZT, O'Neill, P, Hong, D, Zhang, K and Zhao, SQ (2020) Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (a review). Chemosphere 254, 126779.CrossRefGoogle ScholarPubMed
Zuo, KR, Yang, YH, Wu, YD and Wu, SW (2019) Genetic analysis and molecular detection of resistance to chlorpyrifos mediated by the A216S substitution in acetylcholinesterase-1 in the plant bug Apolygus lucorum. Insect Science 1111, 17447917.Google Scholar
Supplementary material: File

Zhen et al. supplementary material

Zhen et al. supplementary material
Download Zhen et al. supplementary material(File)
File 20.2 KB