Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T01:00:02.750Z Has data issue: false hasContentIssue false

Leucocyte ascorbic acid and the leucocyte count

Published online by Cambridge University Press:  09 December 2008

S. Vallance
Affiliation:
British Antarctic Survey, Madingley Road, Cambridge CB3 oET
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. During the course of a nutritional survey on an Antarctic base, leucocyte ascorbic acid estimations (Denson & Bowers, 1961) were found to be significantly affected (P < 0.0001) by the leucocyte count measured during analysis.

2. The effect was significantly less (P < 0.05) when leucocyte levels were at or near saturation than when subsaturated.

3. This suggests that leucocytes share available ascorbic acid, especially in subsaturated subjects, and that assessment of nutritional status from the leucocyte ascorbic acid level should take account of the leucocyte count and the plasma ascorbic acid titre.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Belser, W. B., Hauck, H. M. & Storvick, C. A. (1939). J. Nutr. 17, 513.CrossRefGoogle Scholar
Brook, M. & Grimshaw, J. J. (1968). Am. J. clin. Nutr. 21, 1254.CrossRefGoogle Scholar
Burch, H. B. (1961). Ann. N.Y. Acad. Sci. 92, 268.CrossRefGoogle Scholar
Crandon, J. H., Lund, C. C. & Dill, D. B. (1940). New Engl. J. Med. 223, 353.CrossRefGoogle Scholar
Denson, K. W. & Bowers, E. F. (1961). Clin. Sci. 21, 157.Google Scholar
Gibson, S. L., Moore, F. M. & Goldberg, A. (1966). Br. Med. J. i, 1152.CrossRefGoogle Scholar
Goldsmith, G. A. (1961). Ann. N.Y. Acad. Sci. 92, 230.CrossRefGoogle Scholar
Hellman, L. & Burns, J. J. (1958). J. biol. Chem. 230, 923.CrossRefGoogle Scholar
Irvin, T. T., Chattopadhyay, D. K. & Smythe, A. (1978). Surgery Cynec. Obstet. 147. 49.Google Scholar
Loh, H. S. & Wilson, C. W. M. (1971). Int. J. Vitam. Nutr. Res. 41, 253.Google Scholar
Lowry, O. H. (1952). Physiol. Rev. 32, 432.CrossRefGoogle Scholar
Lowry, O. H., Bessey, O. A., Brock, M. J. & Lopez, J. A. (1946). J. biol. Chem. 166, 111.CrossRefGoogle Scholar
MacLennon, W. J. & Hamilton, J. C. (1976). Age Ageing 5, 43.CrossRefGoogle Scholar
Marchand, C. M. & Pelletier, O. (1977). Int. J. Vitam. Nutr. Res. 47, 236.Google Scholar
Masek, J. (1966). Rev. Czech. Med. 12, 54.Google Scholar
Morse, E. H., Potgeiter, M. & Walker, G. R. (1956). J. Nutr. 58, 291.CrossRefGoogle Scholar
Vallance, B. D., Hume, R. & Weyers, E. (1978). Br. Heart J. 40, 64.CrossRefGoogle Scholar
Vallance, S. (1975). Br. Antarctic Survey Bull. 41/42, 139.Google Scholar