Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T03:40:05.091Z Has data issue: false hasContentIssue false

The influence of vitamin A status on the response of chickens to aflatoxin B1 and changes in liver lipid metabolism associated with aflatoxicosis

Published online by Cambridge University Press:  09 December 2008

W. L. Bryden
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
R. B. Cumming
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
D. Balnave
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1 A series of experiments were conducted to investigate the effects of dietary retinol status on chickens ingesting aflatoxin B1. The effects of dietary supplementation with biotin and α-tocopherol were also examined.

2. Aflatoxin B1 levels greater than I mg/kg diet had a detrimental effect on ‘liveability’, body-weight gain, food intake and food conversion efficiency. When fed for more than 2 weeks aflatoxin increased relative liver weight and liver lipid concentration. These effects were less pronounced with avitaminotic A chickens.

3. A synergistic effect on hydropericardium development was observed between aflatoxin B, and retinol. This effect was not observed when the dietary level of α-tocopherol was increased tenfold.

4. The specific activities of certain hepatic lipogenic and amino acid-metabolizing enzymes were influenced by aflatoxin ingestion. A reduction in lipogenic enzyme activity was observed before a reduction in the activities of amino acid-metabolizing enzymes.

5. Liver fatty acid composition was significantly influenced by aflatoxin B1. The extent of these changes was reduced by the inclusion of additional dietary biotin.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Allcroft, R. (1969). In Aflatoxin: Scientific Background, Control and Implications. [Goldblatt, L. A., editor]. London: Academic Press.Google Scholar
Allcroft, R. & Lewis, G. (1963). Vet. Rec. 75, 487.Google Scholar
Balnave, D. (1966). Proc. 13th Wld's Poult. Congr.Kiev p. 213.Google Scholar
Balnave, D., Cumming, R. B. & Sutherland, T. M. (1977). Br. J. Nutr. 38, 319.CrossRefGoogle Scholar
Becking, G. C. (1973). Can. J. Physiol. Pharmac. 51, 6.CrossRefGoogle Scholar
Bird, H. R. & Culton, T. G. (1940). Proc. Soc. exp. Biol. Med. 44, 543.CrossRefGoogle Scholar
Bryden, W. L., Rajion, M. A., Lloyd, A. B. & Cumming, R. B. (1975). Aust. vet. J. 51, 491.CrossRefGoogle Scholar
Campbell, T. C. & Hayes, J. R. (1976). Toxic. appl. Pharmac. 35, 199.CrossRefGoogle Scholar
Carnaghan, R. B. A., Lewis, G., Patterson, D. S. P. & Allcroft, R. (1966). Path. vet. 3, 601.Google Scholar
Clifford, J. I. & Rees, K. R. (1967). Biochem. J. 102, 65.CrossRefGoogle Scholar
Combs, G. F. Jr (1976). J. Nutr. 106, 967.CrossRefGoogle Scholar
Donaldson, W. E., Tung, H. T. & Hamilton, P. B. (1972). Comp. Biochem. Physiol. 41B, 843.Google Scholar
Ferrando, R., Trauhaut, R., Graillot, C., Gak, J. C. & Fourlon, C. (1974). C. r. hebd. Séanc. Acad. Sci., Paris. 279D, 999,Google Scholar
Ferrando, R., Trauhaut, R., Graillot, C., Gak, J. C. & Fourlon, C. cited In Nutr. Abstr. Rev. (1976) 48, 108.Google Scholar
Folch, J., Lees, N. & Sloane Stanley, C. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Giles, K. W. & Myers, A. (1965). Nature, Lond. 206, 93.CrossRefGoogle Scholar
Gumbmann, M. R. & Williams, S. N. (1969). Toxic. appl. Pharmac. 15, 393.CrossRefGoogle Scholar
Hamilton, P. B. (1977). Fedn Proc. Fedn Am. Socs exp. Biol. 36, 1899.Google Scholar
Hamilton, P. B., Tung, H. T., Harris, J. R., Gainer, J. H. & Donaldson, W. E. (1972). Poult. Sci. 51, 165.CrossRefGoogle Scholar
Hamilton, P. B., Tung, H. T., Wyatt, R. D. & Donaldson, W. E. (1974). Poult. Sci. 53, 871.CrossRefGoogle Scholar
Harding, J. D. J., Done, J. T., Lewis, G. & Allcroft, R. (1963). Res. vet. Sci. 4, 217.CrossRefGoogle Scholar
Hatcher, D. W. & Goldstein, G. (1969). Analyt. Biochem. 31, 42.CrossRefGoogle Scholar
Hood, R. L. (1975). J. Sci. Fd Agric. 26, 1847.CrossRefGoogle Scholar
Knake, R. P., Rao, C. S. & Deyoe, C. W. (1973). Poult. Sci. 52, 2050.Google Scholar
Kriz, H. (1970). Acta vet., Brno 39, 131.Google Scholar
Kyrein, H. J. (1974). Z. Lebensm. Unters-Forsch. 154, 285.CrossRefGoogle Scholar
Layne, E. (1957). In Methods in Enzymology, Vol. 3, p. 450 [Colowick, S. P. & Kapalan, N. O., editors]. New York: Academic Press.Google Scholar
McCuaig, L. W., Carlson, H. C. & Motzok, I. (1972). Poult. Sci. 51, 1206.CrossRefGoogle Scholar
McCuaig, L. W. & Motzok, I. (1970). Poult. Sci. 49, 1050.CrossRefGoogle Scholar
Mallia, A. K., Smith, J. E. & Goodman, D. S. (1975). J. Lipid Res. 16, 180.CrossRefGoogle Scholar
Marchetti, M., Ottani, V. & Puddu, P. (1966). Archs Biochem. Biophys. 115, 84.CrossRefGoogle Scholar
Marchetti, M. & Puddu, P. (1964). Archs Biochem. Biophys. 108, 468.CrossRefGoogle Scholar
Munro, H. N. & Fleck, A. (1966). Analyst, Lond. 91, 78.CrossRefGoogle Scholar
Newberne, P. M. (1973). J. Am. vet. Med. Ass. 163, 1262.Google Scholar
Newberne, P. M. & Butler, W. H. (1969). Cancer Res. 29, 236.Google Scholar
Newberne, P. M. & Rogers, A. E. (1973). J. natn Cancer Inst. 50, 439.CrossRefGoogle Scholar
Patterson, D. S. P. (1973). Fd Cosmet. Toxic. 11, 287.CrossRefGoogle Scholar
Payne, C. G., Gilchrist, P., Pearson, J. A. & Hemsley, L. A. (1974). Br. Poult. Sci. 15, 489.CrossRefGoogle Scholar
Pearce, J. & Balnave, D. (1975). Biochem. Pharmac. 24, 1843.CrossRefGoogle Scholar
Pearce, J. & Balnave, D. (1976). Horm. Metab. Res. 8, 181.CrossRefGoogle Scholar
Pearson, J. A., Fogerty, A. C., Johnson, A. R. & Shenstone, F. S. (1972). Lipids 7, 437.CrossRefGoogle Scholar
Pons, W. A., Cucullu, A. F. & Franz, A. O. (1972). J. Ass. Off. Analyt. Chem. 55, 768.Google Scholar
Pudelkiewicz, W.J., Webster, L. & Matterson, L. D. (1964). J. Nutr. 84, 113.CrossRefGoogle Scholar
Pudelkiewicz, W. J., Webster, L., Olson, G. & Matterson, L. D. (1964). Poult. Sci. 43, 1157.CrossRefGoogle Scholar
Reddy, G.R., Tilak, T. B. G. & Krishnamurthi, D. (1973). Fd Cosmet. Toxic. 11, 467.CrossRefGoogle Scholar
Scott, M. L., Nesheim, M. C. & Young, R. J. (1969). Nutrition of the Chicken. New York: M. L. Scott & Associates.Google Scholar
Shank, R. C. & Wogan, G. N. (1966). Toxic. appl. Pharmac. 9, 468.CrossRefGoogle Scholar
Singh, V. N., Singh, M. & Venkitasubramanian, T. A. (1969). J. Lipid Res. 10, 395.CrossRefGoogle Scholar
Smith, J. W. & Hamilton, P. B. (1970). Poult. Sci. 49, 207.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed.Ames, lowa: Iowa State University Press.Google Scholar
Squibb, R. L. (1963). Poult Sci. 42, 1332.CrossRefGoogle Scholar
Todd, G.C., Shalkop, W. T., Dooley, K. L. & Wiseman, H. G. (1968). Am. J. vet. Res. 29, 1855.Google Scholar
Tung, H. T., Donaldson, W. E. & Hamilton, P. B. (1972). Toxic. appl. Pharmac. 22, 97.CrossRefGoogle Scholar
Veen, W. A. G. (1967). Acta Physiol. Pharmac. Neerl. 14, 448.Google Scholar
Whitehead, C. C., Bannister, D. W., Wight, P. A. L. & Weiser, H. (1974). Proc. 15th Wid's Poult. Congr.New Orleans p. 70.Google Scholar
Wogan, G. N. (1966). Bact. Rev. 30, 460.CrossRefGoogle Scholar
Wogan, G.N. (1975). A. Rev. Pharmac. 15, 437.CrossRefGoogle Scholar
Wyatt, R. D., Thaxton, P. & Hamilton, P. B. (1975). Poult. Sci. 54, 1065.CrossRefGoogle Scholar