Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T23:02:51.982Z Has data issue: false hasContentIssue false

Effect of sugar fatty acid esters on rumen fermentation in vitro

Published online by Cambridge University Press:  09 March 2007

M. Wakita
Affiliation:
Faculty of Agriculture, Mie University, Tsu 514, Japan
S. Hoshino
Affiliation:
Faculty of Agriculture, Mie University, Tsu 514, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1.The effect of sugar fatty acid esters (SFEs; currently used as food additives for human consumption) on rumen volatile fatty acids (VFA) and gas production was studied with sheep rumen contents in vitro.

2. Some SFEs having monoester contents of more than 70 % increased the molar proportion of propionate in conjunction with reduction in the acetate: propionate ratio when the individual SFE was added to rumen contents in a final concentration of 4 g/l. Laurate sugar ester was the most potent propionate enhancer and rumen gas depressor, the effective dose being as low as 1 g/l in a final concentration. Fatty acid esters other than SFEs had little, if any, effect on rumen VFA production and their molar proportions.

3. Approximately 50% of laurate sugar ester was hydrolysed by in vitro incubation with rumen fluid for 2 h. The addition of fatty acids and sucrose was also effective in the alterations of rumen VFA and gas production. However, the effect of SFEs on in vitro rumen fermentation was significantly greater than that of their constituent fatty acids or sucrose, or both. Accordingly, the effect appeared to be ascribed to the complex action of SFE itself and to its constituents, free fatty acids and sucrose.

4. SFEs, at the level of 4 g/l, reduced substantially the froth formation (ingesta volume increase) and seemed to be effective for the prevention of bloat.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Bergen, D. G. & Bates, D. D. (1984). Journal of Animal Science 58, 14651483.CrossRefGoogle Scholar
Blaxter, K. L. & zerkawski, J. (1966). Journal of the Science of Food and Agriculture 17, 417421.CrossRefGoogle Scholar
Chalupa, W. (1977). Journal of Animal Science 46, 585599.CrossRefGoogle Scholar
Chalupa, W., Patterson, J. A., Parish, R. C. & Chow, A. W. (1983). Journal of Animal Science 57, 186194.CrossRefGoogle Scholar
Chalupa, W., Rickabaugh, B., Kronfeld, D. S. & Sklan, D. (1984). Journal of Dairy Science 67, 14391444.CrossRefGoogle Scholar
Clarke, R. T. J. & Reid, C. S. W. (1974). Journal of Dairy Science 57, 753785.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1975). British Journal of Nutrition 34, 429446.CrossRefGoogle Scholar
Davies, A., Nwaonu, H. N., Stanier, G. & Boyle, F. T. (1982). British Journal of Nutrition 47, 565576.CrossRefGoogle Scholar
Demeyer, D. I. & Henderickx, H. K. (1967). Biochimica et Biophysica Acta 137, 484497.CrossRefGoogle Scholar
Dunnett, C. W. (1955). American Statistical Association Journal 50, 10961121.CrossRefGoogle Scholar
Galbraith, H. & Miller, T. B. (1973). Journal of Applied Bacteriology 36, 659675.CrossRefGoogle Scholar
Henderson, C. (1973). Journal of Agricultural Science, Cambridge 81, 107112.CrossRefGoogle Scholar
Hodge, J. E. & Hofreiter, B. T. (1962). In Methods in Carbohydrate Chemistry, vol. 1, pp. 380394. [Whistler, R. L. and Wolfrom, M. L.. editors]. New York: Academic Press.Google Scholar
Jacobson, D. R., Lindahl, I. L., McNeill, J. J., Shaw, J. C., Doetsch, R. N. & Davis, R. E. (1957). Journal of Animal Science 16, 515524.CrossRefGoogle Scholar
Jenkins, T. C. & Palmquist, D. L. (1984). Journal of Dairy Science 67, 978986.CrossRefGoogle Scholar
Laby, R. H. (1975). In Digestion and Metabolism in the Ruminant, pp. 537550. [McDonald, I. W. and Warner, A. C. I., editors]. Armidale NSW 2351. Australia: The University of New England Publishing Unit.Google Scholar
McAllan, A. B., Knight, R. & Sutton, J. D. (1983). British Journal of Nutrition 49, 433440.CrossRefGoogle Scholar
Maczulak, A. E., Dehority, B. A. & Palmquist, D. L. (1981). Applied and Environmental Microbiology 42, 856862.CrossRefGoogle Scholar
Prins, R. A, Van Nevel, C. J. & Demeyer, D. I. (1972). Antonie van Leeuwenhoek Journal of Microbiology and Serology 38, 281287.CrossRefGoogle Scholar
Reese, E. T. & Maguire, A. (1969). Applied Microbiology 17, 242245.CrossRefGoogle Scholar
Stanier, G. & Davies, A. (1981). British Journal of Nutrition 45, 567578.CrossRefGoogle Scholar
Suto, T. (1973). InMethods in the Clinical Examination of the Bovine, pp. 3942 [Nakamura, RYonemura, T. and Suto, T., editors]. Tokyo: Nosan Gyoson Bunka Kyokai. (In Japanese).Google Scholar
Sutton, J. D., Knight, R., McAllan, A. B. & Smith, R. H. (1983). British Journal of Nutrition 49, 419432.CrossRefGoogle Scholar
Takahashi, J., Abekawa, Y. & Yamada, K. (1960). Nippon Nogei Kaguku Kaishi 34, 10431045.CrossRefGoogle Scholar
Ushida, K., Miyazaki, A. & Kawashima, R. (1982). Japanese Journal of Zootechnical Science 53, 412416.Google Scholar
Wakita, M., Yamada, Y. & Hoshino, S. (1985). Proceedings of the 3rd AAAP Animal Science Congress 2, 866868.Google Scholar