Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T04:23:37.088Z Has data issue: false hasContentIssue false

Magnitude rather than number: More evidence needed

Published online by Cambridge University Press:  27 July 2017

Daniel C. Hyde
Affiliation:
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL [email protected]@illinois.eduhttp://labs.psychology.illinois.edu/BCDLab
Yi Mou
Affiliation:
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL [email protected]@illinois.eduhttp://labs.psychology.illinois.edu/BCDLab

Abstract

Leibovich et al. do not present enough empirical support to overturn decades of work supporting a number sense nor to convince the reader that a magnitude sense provides a better explanation of the literature. Here we highlight what we feel are the main points of weakness and the types of evidence that could be provided to be more convincing.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cantrell, L. & Smith, L. B. (2013) Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition 128(3):331–52. doi: 10.1016/j.cognition.2013.04.008.CrossRefGoogle Scholar
Carey, S. (2001) Cognitive foundations of arithmetic: Evolution and ontogenisis. Mind & Language 16(1):3755. doi: 10.1111/1468-0017.00155.Google Scholar
Fantz, R. L., Ordy, J. M. & Udelf. M. S. (1962) Maturation of pattern vision in infants during the first six months. Journal of Comparative and Physiological Psychology 55:907–17. doi: 10.1037/h0044173.CrossRefGoogle Scholar
Feigenson, L. (2011) Predicting sights from sounds: 6-month-olds' intermodal numerical abilities. Journal of Experimental Child Psychology 110(3):347–61. doi: 10.1016/j.jecp.2011.04.004.Google Scholar
Gebuis, T. & Reynvoet, B. (2014) The neural mechanism underlying ordinal numerosity processing. Journal of Cognitive Neuroscience 26:1013–20. doi: 10.1162/jocn_a_00541.Google Scholar
Hume, D. (1748/2007) An enquiry concerning human understanding, ed. Millican, P.. Oxford University Press. (Original work published in 1748.)Google Scholar
Izard, V., Sann, C., Spelke, E. S. & Steri, A. (2009) Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America 106(25):10382–85.Google Scholar
Jordan, K. E. & Brannon, E. M. (2006) The multisensory representation of number in infancy. Proceedings of the National Academy of Sciences of the United States of America 103(9):3486–89. doi: 10.1073/pnas.0508107103.CrossRefGoogle ScholarPubMed
Kellman, P. J. & Arterberry, M. E. (2007) Infant visual perception. In: Handbook of child psychology. Vol. 2. Cognition, perception, and language, ed. Siegler, R. and Kuhn, D., pp. 109–60. Wiley.Google Scholar
Kourtzi, Z. & Grill-Spector, K. (2005) fMRI adaptation: A tool for studying visual representations in the primate brain. In: Fitting the mind into the world: Adaptation and after-effects in high level vision, ed. Rhodes, G. and Clifford, C., pp. 173–88. Oxford University Press.Google Scholar
Leibovich, T. & Henik, A. (2014) Comparing performance in discrete and continuous comparison tasks. Quarterly Journal of Experimental Psychology 67(5):119. doi: 10.1080/17470218.2013.837940.CrossRefGoogle ScholarPubMed
Leibovich, T., Henik, A. & Salti, M. (2015) Numerosity processing is context driven even in the subitizing range: An fMRI study. Neuropsychologia 77:137–47. doi: 10.1016/j.neuropsychologia.2015.08.016.Google Scholar
Piazza, M., Izard, V., Pinel, P., Le Bihan, D. & Dehaene, S. (2004) Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44(3):547–55. doi: 10.1016/j.neuron.2004.10.014.Google Scholar
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11):483–88. doi: 10.1016/j.tics.2003.09.002.Google Scholar