Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T21:37:25.676Z Has data issue: false hasContentIssue false

From continuous magnitudes to symbolic numbers: The centrality of ratio

Published online by Cambridge University Press:  27 July 2017

Pooja G. Sidney
Affiliation:
Department of Psychological Sciences, Kent State University, Kent, OH [email protected]@kent.edupoojasidney.comhttp://www.clarissathompson.com
Clarissa A. Thompson
Affiliation:
Department of Psychological Sciences, Kent State University, Kent, OH [email protected]@kent.edupoojasidney.comhttp://www.clarissathompson.com
Percival G. Matthews
Affiliation:
Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI [email protected]@wisc.eduhttps://website.education.wisc.edu/pmatthews/http://website.education.wisc.edu/edneurolab/
Edward M. Hubbard
Affiliation:
Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI [email protected]@wisc.eduhttps://website.education.wisc.edu/pmatthews/http://website.education.wisc.edu/edneurolab/

Abstract

Leibovich et al.'s theory neither accounts for the deep connections between whole numbers and other classes of number nor provides a potential mechanism for mapping continuous magnitudes to symbolic numbers. We argue that focusing on non-symbolic ratio processing abilities can furnish a more expansive account of numerical cognition that remedies these shortcomings.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barth, H. C. & Paladino, A. M. (2011) The development of numerical estimation: Evidence against a representational shift. Developmental Science 14(1):125–35. doi: 10.1111/j.1467-7687.2010.00962.x.Google Scholar
DeWolf, M., Grounds, M. A., Bassok, M. & Holyoak, K. J. (2014) Magnitude comparison with different types of rational numbers. Journal of Experimental Psychology: Human Perception and Performance 40(1):7182. doi: 10.1037/a0032916.Google ScholarPubMed
Gallistel, C. R. & Gelman, R. (2000) Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences 4(2):5965. doi: 10.1016/S1364-6613(99)01424-2.CrossRefGoogle ScholarPubMed
Halberda, J. & Feigenson, L. (2008) Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology 44(5):1457–65. doi: 10.1037/a0012682.Google Scholar
Henik, A. & Tzelgov, J. (1982) Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition 10(4):389–95. doi: 10.3758/BF03202431.Google Scholar
Jacob, S. N. & Nieder, A. (2009) Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience 30(7):1432–42. doi: 10.1111/j.1460-9568.2009.06932.x.CrossRefGoogle ScholarPubMed
Jacob, S. N., Vallentin, D. & Nieder, A. (2012) Relating magnitudes: The brain's code for proportions. Trends in Cognitive Sciences 16(3):157–66. doi: 10.1016/j.tics.2012.02.002.CrossRefGoogle ScholarPubMed
Leibovich, T., Kallai, A. & Itamar, S. (2016a) What do we measure when we measure magnitudes? In: Continuous issues in numerical cognition, ed. Henik, A., pp. 355–73. Elsevier. doi: 10.1016/B978-0-12-801637-4.00016-0.Google Scholar
Matthews, P. G. & Chesney, D. L. (2015) Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology 78:2856. doi: 10.1016/j.cogpsych.2015.01.006.CrossRefGoogle ScholarPubMed
Matthews, P. G. & Lewis, M. R. (2016) Fractions we cannot ignore: The nonsymbolic ratio congruity effect. Cognitive Science. Available online. doi: 10.1111/cogs.12419.Google Scholar
Matthews, P. G., Lewis, M. R. & Hubbard, E. M. (2016) Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science 27(2):191202. doi: 10.1177/0956797615617799.Google Scholar
McCrink, K. & Wynn, K. (2007) Ratio abstraction by 6-month-old infants. Psychological Science 18(8):740–45. doi: 10.1111/j.1467-9280.2007.01969.x.Google Scholar
Moyer, R. S. & Landauer, T. K. (1967) Time required for judgements of numerical inequality. Nature 215(5109):1519–20. doi: 10.1038/2151519a0.CrossRefGoogle ScholarPubMed
Piazza, M. (2010) Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences 14(12):542–51. doi: 10.1016/J.Tics.2010.09.008.Google Scholar
Siegler, R. S., Thompson, C. A. & Schneider, M. (2011) An integrated theory of whole number and fractions development. Cognitive Psychology 62(4):273–96. Available at: https://doi.org/10.1016/j.cogpsych.2011.03.001.Google Scholar
Thompson, C. A. & Opfer, J. E. (2010) How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development 81(6):1768–86. doi: 10.1111/j.1467-8624.2010.01509.x.Google Scholar
Vallentin, D. & Nieder, A. (2008) Behavioral and prefrontal representation of spatial proportions in the monkey. Current Biology 18(18):1420–25. doi: 10.1016/j.cub.2008.08.042.Google Scholar