Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T14:25:01.942Z Has data issue: false hasContentIssue false

Evidence for, and predictions from, forward modeling in language production

Published online by Cambridge University Press:  24 June 2013

F.-Xavier Alario
Affiliation:
Laboratoire de Psychologie Cognitive, Aix-Marseille Université & CNRS, 13003 Marseille, France. [email protected]://www.univ-provence.fr/wlpc/[email protected]://www.researchgate.net/profile/Carlos_Hamame2/
Carlos M. Hamamé
Affiliation:
Laboratoire de Psychologie Cognitive, Aix-Marseille Université & CNRS, 13003 Marseille, France. [email protected]://www.univ-provence.fr/wlpc/[email protected]://www.researchgate.net/profile/Carlos_Hamame2/

Abstract

Pickering & Garrod (P&G) put forward the interesting idea that language production relies on forward modeling operating at multiple processing levels. The evidence currently available to substantiate this idea mostly concerns sensorimotor processes and not more abstract linguistic levels (e.g., syntax, semantics, phonology). The predictions that follow from the claim seem too general, in their current form, to guide specific empirical tests.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Flinker, A., Chang, E. F., Kirsch, H. E., Barbaro, N. M., Crone, N. E. & Knight, R.T. (2010) Single-trial speech suppression of auditory cortex activity in humans. Journal of Neuroscience 30:16643–50.Google Scholar
Frey, S., Campbell, J. S., Pike, G. B. & Petrides, M. (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience 28:11435–44.Google Scholar
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E. & Donchin, E. (1993) A neural system for error detection and compensation. Psychological Science 4:385–90.Google Scholar
Haruno, M., Wolpert, D. M. & Kawato, M. (2003) Hierarchical MOSAIC for movement generation. International Congress Series 1250:575–90.Google Scholar
Oppenheim, G. M. & Dell, G. S. (2010) Motor movement matters: The flexible abstractness of inner speech. Memory & cognition 38(8):1147–60. DOI:10.1016/j.cognition.2007.02.006.Google Scholar
Rauschecker, J. P. & Scott, S. K. (2009) Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience 12(6):718–24. DOI:10.1038/nn.2331.CrossRefGoogle ScholarPubMed
Riès, S., Janssen, N., Dufau, S., Alario, F.-X. & Burle, B. (2011) General-purpose monitoring during speech production. Journal of Cognitive Neuroscience 23:1419–36.Google Scholar
Sommer, M. A. & Wurtz, R. H. (2008) Brain circuits for the internal monitoring of movements. Annual Review of Neuroscience 31:317–38.CrossRefGoogle ScholarPubMed
Tourville, J. A. & Guenther, F. H. (2011) The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes 26:952–81.Google Scholar
Towle, V. L., Yoon, H. A., Castelle, M., Edgar, J. C., Biassou, N. M., Frim, D. M., Spire, J. P. & Kohrman, M. H. (2008) ECoG gamma activity during a language task: Differentiating expressive and receptive speech areas. Brain 131:2013–27.CrossRefGoogle ScholarPubMed