Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T14:23:57.310Z Has data issue: false hasContentIssue false

Dreams are made of memories, but maybe not for memory

Published online by Cambridge University Press:  21 November 2013

Mark Blagrove
Affiliation:
Department of Psychology, Swansea University, Swansea SA2 8PP, United Kingdom. [email protected]@swansea.ac.ukwww.swansea.ac.uk/sleeplab
Perrine Ruby
Affiliation:
Department of Psychology, Swansea University, Swansea SA2 8PP, United Kingdom. [email protected]@swansea.ac.ukwww.swansea.ac.uk/sleeplab Lyon Neuroscience Research Center, INSERM U1028, Centre Hospitalier Le Vinatier, 69675 Bron Cedex, France. [email protected]://sites.google.com/site/perrineruby
Jean-Baptiste Eichenlaub
Affiliation:
Department of Psychology, Swansea University, Swansea SA2 8PP, United Kingdom. [email protected]@swansea.ac.ukwww.swansea.ac.uk/sleeplab

Abstract

Llewellyn's claim that rapid eye movement (REM) dream imagery may be related to the processes involved in memory consolidation during sleep is plausible. However, whereas there is voluntary and deliberate intention behind the construction of images in the ancient art of memory (AAOM) method, there is a lack of intentionality in producing dream images. The memory for dreams is also fragile, and dependent on encoding once awake.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blagrove, M. (2011) Distinguishing continuity/discontinuity, function and insight when investigating dream content. International Journal of Dream Research 4:4547.Google Scholar
Blagrove, M., Fouquet, N. C., Henley-Einion, J. A., Pace-Schott, E. F., Davies, A. C., Neuschaffer, J. L. & Turnbull, O. H. (2011a) Assessing the dream-lag effect for REM and NREM stage 2 dreams. PLoS ONE 6(10):e26708. doi:10.1371/journal.pone.0026708.Google Scholar
Blagrove, M., Henley-Einion, J., Barnett, A., Edwards, D., & Seage, H. C. (2011b) A replication of the 5–7 day dream-lag effect with comparison of dreams to future events as control for baseline matching. Consciousness and Cognition 20:384–91.CrossRefGoogle ScholarPubMed
Blagrove, M. & Pace-Schott, E. F. (2010) Trait and neurobiological correlates of individual differences in dream recall and dream content. International Review of Neurobiology 92:155–80.Google Scholar
Eichenlaub, J. B., Bertrand, O., Morlet, D. & Ruby, P. (2013) Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness. Cerebral Cortex. ePub ahead of print. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23283685 Google Scholar
Göder, R., Seeck-Hirschner, M., Stingele, K., Huchzermeier, C., Kropp, C., Palaschewski, M., Aldenhoff, J. & Koch, J. (2011) Sleep and cognition at baseline and the effects of REM sleep diminution after 1 week of antidepressive treatment in patients with depression. Journal of Sleep Research 20:544–51.Google Scholar
Jouvet, M. (1991) Paradoxical sleep: Is it the guardian of psychological individualism? [In French.] Canadian Journal of Experimental Psychology 45:148–68.Google Scholar
Kuiken, D. (1995) Dreams and feeling realization. Dreaming 5:129–57.Google Scholar
Nielsen, T. A., Kuiken, D., Alain, G., Stenstrom, P. & Powell, R. A. (2004) Immediate and delayed incorporations of events into dreams: Further replication and implications for dream function. Journal of Sleep Research 13:327–36.Google Scholar
Nielsen, T. A. & Lara-Carrasco, J. (2007) Nightmares, dreaming and emotion regulation: A review. In: The new science of dreaming, vol. 2, ed. Barrett, D. & McNamara, P., pp. 253–84. Praeger.Google Scholar
Nielsen, T., Ouellet, L., Warnes, H., Cartier, A., Malo, J.-L. & Montplaisir, J. (1997) Alexithymia and impoverished dream recall in asthmatic patients: Evidence from self-report measures. Journal of Psychosomatic Research 42:5359.Google Scholar
Palombo, S. R. (1978) Dreaming and memory: A new information-processing model. Basic Books.Google Scholar
Peigneux, P., Orban, P., Balteau, E., Degueldre, C., Luxen, A., Laureys, S. & Maquet, P. (2006) Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biol 4(4):e100. doi:10.1371/journal.pbio.0040100.Google Scholar
Ruby, P. M. (2011) Experimental research on dreaming: State of the art and neuropsychoanalytic perspectives. Frontiers in Psychology 2:286. doi:10.3389/fpsyg.2011.00286.Google Scholar
Stickgold, R. & Walker, M. P. (2013) Sleep-dependent memory triage: Evolving generalization through selective processing. Nature Neuroscience 16(2):139–45.Google Scholar
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J. & Gaskell, M. G. (2010) Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience 30(43):14356–60.Google Scholar
Wamsley, E. J., Tucker, M., Payne, J. D., Benavides, J. A. & Stickgold, R. (2010) Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation. Current Biology 20:850–55.Google Scholar
Wang, K., Yu, C. S., Xu, L. J., Qin, W., Li, K. C., Xu, L. & Jiang, T. Z. (2009) Offline memory reprocessing: Involvement of the brain's default network in spontaneous thought processes. PloS ONE 4(3):e4867. doi:10.1371/journal.pone.0004867.Google Scholar
Watts, A., Gritton, H. J., Sweigart, J. & Poe, G. R. (2012) Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning. Journal of Neuroscience 32:13411–20.Google Scholar