Article contents
Précis of Vigor: Neuroeconomics of Movement Control
Published online by Cambridge University Press: 02 December 2020
Abstract
Why do we run toward people we love, but only walk toward others? Why do people in New York seem to walk faster than other cities? Why do our eyes linger longer on things we value more? There is a link between how the brain assigns value to things, and how it controls our movements. This link is an ancient one, developed through shared neural circuits that on one hand teach us how to value things, and on the other hand control the vigor with which we move. As a result, when there is damage to systems that signal reward, like dopamine and serotonin, that damage not only affects our mood and patterns of decision-making, but how we move. In this book, we first ask why, in principle, evolution should have developed a shared system of control between valuation and vigor. We then focus on the neural basis of vigor, synthesizing results from experiments that have measured activity in various brain structures and neuromodulators, during tasks in which animals decide how patiently they should wait for reward, and how vigorously they should move to acquire it. Thus, the way we move unmasks one of our well-guarded secrets: how much we value the thing we are moving toward.
- Type
- Précis
- Information
- Copyright
- Copyright © The Author(s), 2020. Published by Cambridge University Press
References
- 11
- Cited by
Target article
Précis of Vigor: Neuroeconomics of Movement Control
Related commentaries (14)
A role of serotonin and the insula in vigor: Tracking environmental and physiological resources
Construction of Roman roads toward neuroeconomics
Costs and benefits of communicating vigor
Foundational assumption reasonable but uncertain
How not to answer interdisciplinary “Why?” questions
Movement vigor: Frameworks, exceptions, and nomenclature
Moving fast and seeing slow? The visual consequences of vigorous movement
Quantum decision corrections for the neuroeconomics of irrational movement control and goal attainment
Reducing behavioral dimensions to study brain–environment interactions
Thoughts on vigor in the motor and cognitive domains
Time and the decider
Vigor and aspiration levels in neuroeconomics
Vigor of reactive postural responses is set from feedback and feedforward processes
Why we don't move: The importance of somatic maintenance and resting
Author response
Movement control, decision-making, and the building of Roman roads to link them