No CrossRef data available.
Article contents
Gaze-contingent manipulation of the FVF demonstrates the importance of fixation duration for explaining search behavior
Published online by Cambridge University Press: 24 May 2017
Abstract
Hulleman & Olivers' (H&O's) model introduces variation of the functional visual field (FVF) for explaining visual search behavior. Our research shows how the FVF can be studied using gaze-contingent displays and how FVF variation can be implemented in models of gaze control. Contrary to H&O, we believe that fixation duration is an important factor when modeling visual search behavior.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2017
References
Cajar, A., Engbert, R. & Laubrock, J. (2016a) Spatial frequency processing in the central and peripheral visual field during scene viewing. Vision Research
127:186–97. doi: 10.1016/j.visres.2016.05.008.CrossRefGoogle ScholarPubMed
Cajar, A., Schneeweiß, P., Engbert, R. & Laubrock, J. (2016b) Coupling of attention and saccades when viewing scenes with central and peripheral degradation. Journal of Vision
16(2):8, 1–19.CrossRefGoogle ScholarPubMed
Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., Linenweber, M. R., Petersen, S. E., Raichle, M. E., Essen, D. C. V. & Shulman, G. L. (1998) A common network of functional areas for attention and eye movements. Neuron
21:761–73.CrossRefGoogle ScholarPubMed
Engbert, R., Mergenthaler, K., Sinn, P. & Pikovsky, A. (2011) An integrated model of fixational eye movements and microsaccades. Proceedings of the National Academy of Sciences of the United States of America
108:E765–70.Google ScholarPubMed
Engbert, R., Trukenbrod, H. A., Barthelmé, S. & Wichmann, F. A. (2015) Spatial statistics and attentional dynamics in scene viewing. Journal of Vision
15(1):14, 1–17.CrossRefGoogle ScholarPubMed
Henderson, J. M. & Ferreira, F. (1990) Effects of foveal processing difficulty on the perceptual span in reading: Implications for attention and eye movement control. Journal of Experimental Psychology: Learning, Memory, and Cognition
16:417–29.Google ScholarPubMed
Laubrock, J., Cajar, A. & Engbert, R. (2013) Control of fixation duration during scene viewing by interaction of foveal and peripheral processing. Journal of Vision
13(12):11, 1–20.CrossRefGoogle ScholarPubMed
Laubrock, J., Engbert, R. & Kliegl, R. (2005) Microsaccade dynamics during covert attention. Vision Research
45:721–30.CrossRefGoogle ScholarPubMed
Laubrock, J., Engbert, R. & Kliegl, R. (2008) Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision
8(14):13, 1–17.CrossRefGoogle ScholarPubMed
Loschky, L. C. & McConkie, G. W. (2002) Investigating spatial vision and dynamic attentional selection using a gaze-contingent multiresolutional display. Journal of Experimental Psychology: Applied
8:99–117.Google ScholarPubMed
Loschky, L. C., McConkie, G. W., Yang, J. & Miller, M. E. (2005) The limits of visual resolution in natural scene viewing. Visual Cognition
12:1057–92.CrossRefGoogle Scholar
Malcolm, G. L. & Henderson, J. M. (2009) The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision
9(11):8, 1–13.CrossRefGoogle ScholarPubMed
Malcolm, G. L. & Henderson, J. M. (2010) Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision
10(2):4, 1–11.CrossRefGoogle ScholarPubMed
McConkie, G. W. & Rayner, K. (1975) The span of the effective stimulus during a fixation in reading. Perception and Psychophysics
17:578–86. doi: 10.3758/BF03203972.CrossRefGoogle Scholar
Nuthmann, A. (2014) How do the regions of the visual field contribute to object search in real-world scenes? Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance
40:342–60.Google ScholarPubMed
Rayner, K. (1986) Eye movements and the perceptual span in beginning and skilled readers. Journal of Experimental Child Psychology
41:211–36.CrossRefGoogle ScholarPubMed
Schad, D. J. & Engbert, R. (2012) The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model. Visual Cognition
20:391–421.CrossRefGoogle ScholarPubMed
Shioiri, S. & Ikeda, M. (1989) Useful resolution for picture perception as a function of eccentricity. Perception
18:347–61.CrossRefGoogle ScholarPubMed
Sperlich, A., Schad, D. J. & Laubrock, J. (2015) When preview information starts to matter: Development of the perceptual span in German beginning readers. Journal of Cognitive Psychology
27:511–30.CrossRefGoogle Scholar
Target article
The impending demise of the item in visual search
Related commentaries (30)
An appeal against the item's death sentence: Accounting for diagnostic data patterns with an item-based model of visual search
Analysing real-world visual search tasks helps explain what the functional visual field is, and what its neural mechanisms are
Chances and challenges for an active visual search perspective
Cognitive architecture enables comprehensive predictive models of visual search
Contextual and social cues may dominate natural visual search
Don't admit defeat: A new dawn for the item in visual search
Eye movements are an important part of the story, but not the whole story
Feature integration, attention, and fixations during visual search
Fixations are not all created equal: An objection to mindless visual search
Gaze-contingent manipulation of the FVF demonstrates the importance of fixation duration for explaining search behavior
How functional are functional viewing fields?
Item-based selection is in good shape in visual compound search: A view from electrophysiology
Looking further! The importance of embedding visual search in action
Mathematical fixation: Search viewed through a cognitive lens
Oh, the number of things you will process (in parallel)!
Parallel attentive processing and pre-attentive guidance
Scanning movements during haptic search: similarity with fixations during visual search
Searching for unity: Real-world versus item-based visual search in age-related eye disease
Set size slope still does not distinguish parallel from serial search
Task implementation and top-down control in continuous search
The FVF framework and target prevalence effects
The FVF might be influenced by object-based attention
The “item” as a window into how prior knowledge guides visual search
Those pernicious items
Until the demise of the functional field of view
What fixations reveal about oculomotor scanning behavior in visual search
Where the item still rules supreme: Time-based selection, enumeration, pre-attentive processing and the target template?
Why the item will remain the unit of attentional selection in visual search
“I am not dead yet!” – The Item responds to Hulleman & Olivers
“Target-absent” decisions in cancer nodule detection are more efficient than “target-present” decisions!
Author response
On the brink: The demise of the item in visual search moves closer