Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T13:50:07.492Z Has data issue: false hasContentIssue false

Direct and rapid encoding of numerosity in the visual stream

Published online by Cambridge University Press:  27 July 2017

Joonkoo Park
Affiliation:
Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA [email protected]://codeneuro.net/
Nick K. DeWind
Affiliation:
Department of Psychology, University of Pennsylvania, Philadelphia, PA [email protected]@sas.upenn.eduhttp://web.sas.upenn.edu/brannon-lab/
Elizabeth M. Brannon
Affiliation:
Department of Psychology, University of Pennsylvania, Philadelphia, PA [email protected]@sas.upenn.eduhttp://web.sas.upenn.edu/brannon-lab/

Abstract

The target article dismisses all prior work purporting to demonstrate that number is a conceptual primitive. Here, we take issue with their misrepresentation of our recent line of work on numerosity perception, which demonstrates rapid and direct encoding of numerosity and undermines the thesis of the target article that “continuous magnitudes are more automatic and basic than numerosities” (sect. 1, para. 2).

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allik, J. & Tuulmets, T. (1993) Perceived numerosity of spatiotemporal events. Perception & Psychophysics 53(4):450–59. doi: 10.3758/bf03206789.Google Scholar
DeWind, N. K., Adams, G. K., Platt, M. L. & Brannon, E. M. (2015) Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition 142:247–65. doi: 10.1016/j.cognition.2015.05.016.CrossRefGoogle ScholarPubMed
Fornaciai, M. & Park, J. (2017) Distinct neural signatures for very small and very large numerosities. Frontiers in Human Neuroscience 11:21. doi: 10.3389/fnhum.2017.00021.Google Scholar
Gebuis, T. & Reynvoet, B. (2012b) The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General 141(4):642–48. doi: 10.1037/a0026218.Google Scholar
Gebuis, T. & Reynvoet, B. (2013) The neural mechanisms underlying passive and active processing of numerosity. NeuroImage 70:301307. doi: 10.1016/j.neuroimage.2012.12.048.Google Scholar
Ginsburg, N. & Nicholls, A. (1988) Perceived numerosity as a function of item size. Perceptual and Motor Skills 67(2):656–58. doi: 10.2466/pms.1988.67.2.656.Google Scholar
Leibovich, T., Vogel, S. E., Henik, A. & Ansari, D. (2016b) Asymmetric processing of numerical and non-numerical magnitudes in the brain: An fMRI study. Journal of Cognitive Neuroscience 28(1):166–76. doi: 10.1162/jocn_a_00887.CrossRefGoogle Scholar
Miller, A. L. & Baker, R. A. (1968) The effects of shape, size, heterogeneity, and instructional set on the judgment of visual number. American Journal of Psychology 81(1):8391.Google Scholar
Mix, K. S., Huttenlocher, J. & Levine, S. C. (2002a) Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin 128(2):278–94. doi: 10.1037/0033-2909.128.2.278.CrossRefGoogle ScholarPubMed
Nys, J. & Content, A. (2012) Judgement of discrete and continuous quantity in adults: Number counts! Quarterly Journal of Experimental Psychology 65(4):675–90. doi: 10.1080/17470218.2011.619661.Google Scholar
Park, J. (2017) A neural basis for the visual sense of number and its development: A steady-state visual evoked potential study in children and adults. Developmental Cognitive Neuroscience. Available online March 2, 2017. doi: 10.1016/j.dcn.2017.02.011.CrossRefGoogle Scholar
Park, J., DeWind, N. K., Woldorff, M. G. & Brannon, E. M. (2016b) Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex 26(2):748–63. doi: 10.1093/cercor/bhv017.Google ScholarPubMed
Soltesz, F., Szucs, D. & Szucs, L. (2010) Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions 6:13. doi: 10.1186/1744-9081-6-13.Google Scholar
Sophian, C. & Chu, Y. (2008) How do people apprehend large numerosities? Cognition 107(2):460–78. Available at: http://dx.doi.org/10.1016/j.cognition.2007.10.009.Google Scholar
Tokita, M. & Ishiguchi, A. (2013) Effects of perceptual variables on numerosity comparison in 5–6-year-olds and adults. Frontiers in Psychology 4:431. doi: 10.3389/fpsyg.2013.00431.CrossRefGoogle ScholarPubMed