No CrossRef data available.
Article contents
Building brains that communicate like machines
Published online by Cambridge University Press: 10 November 2017
Abstract
Reverse engineering human cognitive processes may improve artificial intelligence, but this approach implies we have little to learn regarding brains from human-engineered systems. On the contrary, engineered technologies of dynamic network communication have many features that highlight analogous, poorly understood, or ignored aspects of brain and cognitive function, and mechanisms fundamental to these technologies can be usefully investigated in brains.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2017
References
Briggs, F. & Usrey, W. M. (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. The Journal of Neuroscience
27(20):5431–36.Google Scholar
Fornito, A., Zalesky, A. & Bullmore, E. (2016) Fundamentals of brain network analysis. Academic Press.Google Scholar
Giambene, G. (2005) Queuing theory and telecommunications networks and applications. Springer Science + Business Media.Google Scholar
Graham, D. J. (2014) Routing in the brain. Frontiers in Computational Neuroscience
8:44.Google Scholar
Graham, D. J. and Rockmore, D. N. (2011) The packet switching brain. Journal of Cognitive Neuroscience
23(2):267–76.Google Scholar
Granger, R. (2006) Engines of the brain: The computational instruction set of human cognition. AI Magazine
27(2):15.Google Scholar
Mišić, B., Sporns, O. & McIntosh, A. R. (2014) Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Computational Biology
10(1):e1003427.Google Scholar
Olshausen, B. A., Anderson, C. H. & Van Essen, D. C. (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience
13(11):4700–19.Google Scholar
Poggio, T. (1984) Routing thoughts. Massachusetts Institute of Technology Artificial Intelligence Laboratory Working Paper 258.Google Scholar
Schlegel, A., Alexander, P. & Peter, U. T. (2015) Information processing in the mental workspace is fundamentally distributed. Journal of Cognitive Neuroscience
28(2):295–307.Google Scholar
Sizemore, A., Giusti, C., Betzel, R. F. & Bassett, D. S. (2016) Closures and cavities in the human connectome. arXiv preprint 1608.03520. Available at: https://arxiv.org/abs/1608.03520.Google Scholar
Trettenbrein, P. C. (2016) The demise of the synapse as the locus of memory: A looming paradigm shift?
Frontiers in Systems Neuroscience
10:88.Google Scholar
U.S. Postal Service Historian (2016) Pieces of mail handled, number of post offices, income, and expenses since 1789. Available at: https://about.usps.com/who-we-are/postal-history/pieces-of-mail-since-1789.htm.Google Scholar
Wiskott, L. (2006). How does our visual system achieve shift and size invariance? In: 23 Problems in systems neuroscience, ed. Van Hemmen, J. L. & Sejnowski, T. J., pp. 322–40. Oxford University Press.Google Scholar
Wiskott, L. & von der Malsburg, C. (1996) Face recognition by dynamic link matching. In: Lateral interactions in the cortex: structure and function, ed. Sirosh, J., Miikkulainen, R. and Choe, Y., ch 11. The UTCS Neural Networks Research Group.Google Scholar
Target article
Building machines that learn and think like people
Related commentaries (27)
Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning
Avoiding frostbite: It helps to learn from others
Back to the future: The return of cognitive functionalism
Benefits of embodiment
Building brains that communicate like machines
Building machines that adapt and compute like brains
Building machines that learn and think for themselves
Building on prior knowledge without building it in
Causal generative models are just a start
Children begin with the same start-up software, but their software updates are cultural
Crossmodal lifelong learning in hybrid neural embodied architectures
Deep-learning networks and the functional architecture of executive control
Digging deeper on “deep” learning: A computational ecology approach
Evidence from machines that learn and think like people
Human-like machines: Transparency and comprehensibility
Intelligent machines and human minds
Social-motor experience and perception-action learning bring efficiency to machines
The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction
The argument for single-purpose robots
The fork in the road
The humanness of artificial non-normative personalities
The importance of motivation and emotion for explaining human cognition
Theories or fragments?
Thinking like animals or thinking like colleagues?
Understand the cogs to understand cognition
What can the brain teach us about building artificial intelligence?
Will human-like machines make human-like mistakes?
Author response
Ingredients of intelligence: From classic debates to an engineering roadmap