Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T17:22:05.500Z Has data issue: false hasContentIssue false

The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction

Published online by Cambridge University Press:  10 November 2017

Gianluca Baldassarre
Affiliation:
Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy. [email protected]@[email protected]@istc.cnr.ithttp://www.istc.cnr.it/people/http://www.istc.cnr.it/people/gianluca-baldassarrehttp://www.istc.cnr.it/people/vieri-giuliano-santuccihttp://www.istc.cnr.it/people/emilio-cartonihttp://www.istc.cnr.it/people/daniele-caligiore
Vieri Giuliano Santucci
Affiliation:
Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy. [email protected]@[email protected]@istc.cnr.ithttp://www.istc.cnr.it/people/http://www.istc.cnr.it/people/gianluca-baldassarrehttp://www.istc.cnr.it/people/vieri-giuliano-santuccihttp://www.istc.cnr.it/people/emilio-cartonihttp://www.istc.cnr.it/people/daniele-caligiore
Emilio Cartoni
Affiliation:
Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy. [email protected]@[email protected]@istc.cnr.ithttp://www.istc.cnr.it/people/http://www.istc.cnr.it/people/gianluca-baldassarrehttp://www.istc.cnr.it/people/vieri-giuliano-santuccihttp://www.istc.cnr.it/people/emilio-cartonihttp://www.istc.cnr.it/people/daniele-caligiore
Daniele Caligiore
Affiliation:
Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy. [email protected]@[email protected]@istc.cnr.ithttp://www.istc.cnr.it/people/http://www.istc.cnr.it/people/gianluca-baldassarrehttp://www.istc.cnr.it/people/vieri-giuliano-santuccihttp://www.istc.cnr.it/people/emilio-cartonihttp://www.istc.cnr.it/people/daniele-caligiore

Abstract

In this commentary, we highlight a crucial challenge posed by the proposal of Lake et al. to introduce key elements of human cognition into deep neural networks and future artificial-intelligence systems: the need to design effective sophisticated architectures. We propose that looking at the brain is an important means of facing this great challenge.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. L. (2003) Embodied cognition: A field guide. Artificial Intelligence 149(1):91130.Google Scholar
Baldassarre, G. (2011) What are intrinsic motivations? A biological perspective. In: Proceedings of the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob-2011), ed. Cangelosi, A., Triesch, J., Fasel, I., Rohlfing, K., Nori, F., Oudeyer, P.-Y., Schlesinger, M. & Nagai, Y., pp. E18. IEEE.Google Scholar
Baldassarre, G., Caligiore, D. & Mannella, F. (2013a) The hierarchical organisation of cortical and basal-ganglia systems: A computationally-informed review and integrated hypothesis. In: Computational and robotic models of the hierarchical organisation of behaviour, ed. Baldassarre, G. & Mirolli, M., pp. 237–70. Springer-Verlag.Google Scholar
Baldassarre, G., Mannella, F., Fiore, V. G., Redgrave, P., Gurney, K. & Mirolli, M. (2013b) Intrinsically motivated action-outcome learning and goal-based action recall: A system-level bio-constrained computational model. Neural Networks 41:168–87.CrossRefGoogle ScholarPubMed
Baldassarre, G. & Mirolli, M., eds. (2013) Intrinsically motivated learning in natural and artificial systems. Springer.Google Scholar
Baldassarre, G., Stafford, T., Mirolli, M., Redgrave, P., Ryan, R. M. & Barto, A. (2014) Intrinsic motivations and open-ended development in animals, humans, and robots: An overview. Frontiers in Psychology 5:985.Google Scholar
Caligiore, D., Borghi, A., Parisi, D. & Baldassarre, G. (2010) TRoPICALS: A computational embodied neuroscience model of compatibility effects. Psychological Review 117(4):1188–228.Google Scholar
Caligiore, D., Pezzulo, G., Baldassarre, G., Bostan, A. C., Strick, P. L., Doya, K., Helmich, R. C., Dirkx, M., Houk, J., Jörntell, H., Lago-Rodriguez, A., Galea, J. M., Miall, R. C., Popa, T., Kishore, A., Verschure, P. F. M. J., Zucca, R. & Herreros, I. (2016) Consensus paper: Towards a systems-level view of cerebellar function: The interplay between cerebellum, basal ganglia, and cortex. The Cerebellum 16(1):203–29. doi: 10.1007/s12311-016-0763-3.Google Scholar
Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V. (2012) Neural population dynamics during reaching. Nature 487:5156.CrossRefGoogle ScholarPubMed
Doya, K. (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks 12(7–8):961–74.Google Scholar
Franklin, S. (2007) A foundational architecture for artificial general intelligence. In: Advances in artificial general intelligence: Concepts, architectures and algorithms: Proceedings of the AGI Workshop 2006, ed. Want, P. & Goertzel, B., pp. 3654. IOS Press.Google Scholar
Graybiel, A. M. (2005) The basal ganglia: learning new tricks and loving it. Current Opinion in Neurobiology 15(6):638–44.Google Scholar
Houk, J. C., Adams, J. L. & Barto, A. G. (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Models of information processing in the basal ganglia, ed. Houk, J. C., Davids, J. L. & Beiser, D. G., pp. 249–70. MIT Press.Google Scholar
Kawato, M., Kuroda, S. & Schweighofer, N. (2011) Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control. Current Opinion in Neurobiology 21(5):791800.Google Scholar
Lisman, J. E. & Grace, A. A. (2005) The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 46:703–13.Google Scholar
Mannella, F. & Baldassarre, G. (2015) Selection of cortical dynamics for motor behaviour by the basal ganglia. Biological Cybernetics 109:575–95.Google Scholar
Mannella, F., Gurney, K. & Baldassarre, G. (2013) The nucleus accumbens as a nexus between values and goals in goal-directed behavior: A review and a new hypothesis. Frontiers in Behavioral Neuroscience 7(135):e129.Google Scholar
Milner, D. & Goodale, M. (2006) The visual brain in action. Oxford University Press.Google Scholar
Mirolli, M., Mannella, F. & Baldassarre, G. (2010) The roles of the amygdala in the affective regulation of body, brain and behaviour. Connection Science 22(3):215–45.Google Scholar
Mogenson, G. J., Jones, D. L. & Yim, C. Y. (1980) From motivation to action: Functional interface between the limbic system and the motor system. Progress in Neurobiology 14(2–3):6997.Google Scholar
Penhune, V. B. & Steele, C. J. (2012) Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behavioural Brain Research 226(2):579–91.Google Scholar
Pfeifer, R. & Gómez, G. (2009) Morphological computation–connecting brain, body, and environment. In: Creating brain-like intelligence, ed. Sendhoff, B., Körner, E, Ritter, H. & Doya, K., pp. 6683. Springer.Google Scholar
Redgrave, P. & Gurney, K. (2006) The short-latency dopamine signal: a role in discovering novel actions? Nature Reviews Neuroscience 7:967–75.Google Scholar
Santucci, V. G., Baldassarre, G. & Mirolli, M. (2016), GRAIL: A goal-discovering robotic architecture for intrinsically-motivated learning, IEEE Transactions on Cognitive and Developmental Systems 8(3):214–31.Google Scholar
Scott, S. H. (2004) Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience 5(7):532–46.Google Scholar
Shadmehr, R. & Krakauer, J. W. (2008) A computational neuroanatomy for motor control. Experimental Brain Research 185(3):359–81.Google Scholar
Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M. & Thelen, E. (2001) Autonomous mental development by robots and animals. Science 291(5504):599600.Google Scholar
Wolpert, D. M., Miall, R. C. & Kawato, M. (1998) Internal models in the cerebellum. Trends in Cognitive Science 2(9):338–47.Google Scholar