In the present paper, different estimators of the Pareto parameter α will be proposed and compared to each others.
First traditional estimators of α as the maximum likelihood estimator and the moment estimator will be deduced and their statistical properties will be analyzed. It is shown that the maximum likelihood estimator is biased but it can easily be modified to an minimum-variance unbiased estimator of a. But still the coefficient of variance of this estimator is very large.
For similar portfolios containing same types of risks we will expect the estimated α-values to be at the same level. Therefore, credibility theory is used to obtain an alternative estimator of α which will be more stable and less sensitive to random fluctuations in the observed losses.
Finally, an estimator of the risk premium for an unlimited excess of loss cover will be proposed. It is shown that this estimator is a minimum-variance unbiased estimator of the risk premium. This estimator of the risk premium will be compared to the more traditional methods of calculating the risk premium.