We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In conventional studies, cryptographic techniques are used to ensure the security of transaction between a seller and buyer in a fingerprinting system. However, the tracing protocol from a pirated copy has not been studied from the security point of view though the collusion resistance is considered by employing a collusion secure fingerprinting code. In this paper, we consider the secrecy of parameters for a fingerprinting code and burdens at a trusted center, and propose a secure tracing protocol jointly executed by a seller and a delegated server. Our main idea is to delegate authority to a server so that the center is required to operate only at the initialization phase in the system. When a pirated copy is found, a seller calculates a correlation score for each user's codeword in an encrypted domain, and identifies illegal users by sending the ciphertexts of scores as queries to the server. The information leakage from the server can be managed at the restriction of response from the server to check the maliciousness of the queries.
A novel grayscale-based block scrambling image encryption scheme is presented not only to enhance security, but also to improve the compression performance for Encryption-then-Compression (EtC) systems with JPEG compression, which are used to securely transmit images through an untrusted channel provider. The proposed scheme enables the use of a smaller block size and a larger number of blocks than the color-based image encryption scheme. Images encrypted using the proposed scheme include less color information due to the use of grayscale images even when the original image has three color channels. These features enhance security against various attacks, such as jigsaw puzzle solver and brute-force attacks. Moreover, generating the grayscale-based images from a full-color image in YCbCr color space allows the use of color sub-sampling operation, which can provide the higher compression performance than the conventional grayscale-based encryption scheme, although the encrypted images have no color information. In an experiment, encrypted images were uploaded to and then downloaded from Twitter and Facebook, and the results demonstrated that the proposed scheme is effective for EtC systems and enhances the compression performance, while maintaining the security against brute-force and jigsaw puzzle solver attacks.
A semi-fragile watermarking scheme is proposed in this paper for detecting tampering in speech signals. The scheme can effectively identify whether or not original signals have been tampered with by embedding hidden information into them. It is based on singular-spectrum analysis, where watermark bits are embedded into speech signals by modifying a part of the singular spectrum of a host signal. Convolutional neural network (CNN)-based parameter estimation is deployed to quickly and properly select the part of the singular spectrum to be modified so that it meets inaudibility and robustness requirements. Evaluation results show that CNN-based parameter estimation reduces the computational time of the scheme and also makes the scheme blind, i.e. we require only a watermarked signal in order to extract a hidden watermark. In addition, a semi-fragility property, which allows us to detect tampering in speech signals, is achieved. Moreover, due to the time efficiency of the CNN-based parameter estimation, the proposed scheme can be practically used in real-time applications.