Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T04:48:08.608Z Has data issue: false hasContentIssue false

Neurocognitive studies of language impairments: The bottom-up approach

Published online by Cambridge University Press:  01 January 2005

RALPH-AXEL MÜLLER
Affiliation:
San Diego State University

Abstract

Neurocognitive studies can approach gene-based developmental language impairments from two angles, which are complementary and ideally combined in a research program. One approach aims at an optimal phenotypic description of a disorder and from there proceeds to a biological and developmental understanding. Complementary to such a top-down approach, a bottom-up perspective will primarily focus on potential etiological pathways and attempt to explain complex outcome phenotypes in terms of elementary developmental disturbances. My paper is dedicated to this latter approach. I argue that in behaviorally defined disorders (such as specific language impairment or autism) shared genetic risk and common etiology can at best be expected for specific aspects of language deficit and that such shared etiology will only apply to subtypes of these disorders. One reason for this skepticism is that the emerging language system in children can be affected in many different ways via more elementary sensory, perceptual, cognitive, and motor impairments. Neurocognitive research on developmental language disorders relies on an understanding of such potential elementary disturbances before it can confidently proceed to the study of complex linguistic impairments.

Type
Articles
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amunts K., Schlaug G., Jäncke L., Steinmetz H., Schleicher A., Dabringhaus A., & Zilles K. 1997. Motor cortex and hand motor skills: Structural compliance in the human brain. Human Brain Mapping, 5, 206215.Google Scholar
Bailey D. B. Jr., Hatton D. D., Skinner M., & Mesibov G. 2001. Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. Journal of Autism and Developmental Disorders, 31, 165174.Google Scholar
Baron–Cohen S., Ring H. A., Wheelwright S., Bullmore E. T., Brammer M. J., Simmons A., & Williams S. C. 1999. Social intelligence in the normal and autistic brain: An fMRI study. European Journal of Neuroscience, 11, 18911898.Google Scholar
Bellugi U., Bihrle A., Jernigan T., Trauner D., & Doherty S. 1990. Neuropsychological, neurological, and neuroanatomical profile of Williams syndrome. American Journal of Medical Genetics, 6 (Suppl), 115125.Google Scholar
Bellugi U., Bihrle A., Neville H., Doherty S., & Jernigan T. 1992. Language, cognition, and brain organization in a neurodevelopmental disorder. In C. A. N. Megan R. Gunnar (Ed.), The Minnesota Symposia on Child Psychology: Vol. 24. Developmental behavioral neuroscience. (pp. xiii, 249): Hillsdale, NJ: Erlbaum.
Brown J. W. 1988. Introduction: Microgenetic theory. In J. W. Brown (Ed.), The life of the mind (pp. 126). Hillsdale, NJ: Erlbaum.
Carpenter A., Sinclair J., Ronan M. T., & Lissner K. 1992. Personal essays. In E. Schopler & G. Mesibov (Eds.), High-functioning individuals with autism (pp. 289306). New York: Plenum Press.
Carston R. 2000. The relationship between generative grammar and (relevance–theoretic) pragmatics. Language and Communication, 20, 87103.Google Scholar
Charman T. 2003. Why is joint attention a pivotal skill in autism? Philosophical Transactions of the Royal Society of London B Biological Sciences, 358 (1430), 315324.Google Scholar
Churchland P. S. 1986. Neurophilosophy. Cambridge, MA: MIT Press.
Clahsen H. 1989. The grammatical characterization of developmental dysphasia. Linguistics, 27, 897920.Google Scholar
Clark M. M., & Plante E. 1998. Morphology of the inferior frontal gyrus in developmentally language-disordered adults. Brain and Language, 61, 288303.Google Scholar
Courchesne E., Karns C. M., Davis H. R., Ziccardi R., Carper R. A., Tigue Z. D., Chisum H. J., Moses P., Pierce K., Lord C., Lincoln A. J., Pizzo S., Schreibman L., Haas R. H., Akshoomoff N. A., & Courchesne R. Y. 2001. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245254.CrossRefGoogle Scholar
Desimone R., Albright T. D., Gross C. G., & Bruce C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4, 20512062.Google Scholar
Donnai D., & Karmiloff–Smith A. 2000. Williams syndrome: from genotype through to the cognitive phenotype. American Journal of Medical Genetics, 97, 164171.Google Scholar
Dunn M., Gomes H., & Sebastian M. J. 1996. Prototypicality of responses of autistic, language disordered, and normal children in a word fluency task. Child Neuropsychology, 2, 99108.Google Scholar
Eden G. F., VanMeter J. W., Rumsey J. M., Maisog J. M., Woods R. P., & Zeffiro T. A. 1996. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382 (6586), 6669.Google Scholar
Fisher S. E. 2005. Dissection of molecular mechanisms underlying speech and language disorders. Applied Psycholinguistics, 26, 111128.Google Scholar
Fisher S. E., Vargha–Khadem F., Watkins K. E., Monaco A. P., & Pembrey M. E. 1998. Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168170.Google Scholar
Gauger L. M., Lombardino L. J., & Leonard C. M. 1997. Brain morphology in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 40, 12721284.Google Scholar
Gopnik M. 1990. Feature blindness: A case study. Language Acquisition: A Journal of Developmental Linguistics, 1, 139164.Google Scholar
Gottlieb G., & Halpern C. T. 2002. A relational view of causality in normal and abnormal development. Development and Psychopathology, 14, 421435.Google Scholar
Grandin T. 1992. An inside view of autism. In E. Schopler & G. Mesibov (Eds.), High-functioning individuals with autism (pp. 105126). New York: Plenum Press.
Grant J., Valian V., & Karmiloff-Smith A. 2002. A study of relative clauses in Williams syndrome. Journal of Child Language, 29, 403416.Google Scholar
Hammer S., Dorrani N., Dragich J., Kudo S., & Schanen C. 2002. The phenotypic consequences of MECP2 mutations extend beyond Rett syndrome. Mental Retardation and Developmental Disabilities Research Review, 8, 9498.Google Scholar
Herbert M. R., Harris G. J., Adrien K. T., Ziegler D. A., Makris N., Kennedy D. N., Lange N. T., Chabris C. F., Bakardjiev A., Hodgson J., Takeoka M., Tager-Flusberg H., & Caviness V. S. Jr. 2002. Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52, 588596.Google Scholar
Hoshi Y. 2003. Functional near-infrared optical imaging: Utility and limitations in human brain mapping. Psychophysiology, 40, 511520.CrossRefGoogle Scholar
Jackson T., & Plante E. 1996. Gyral morphology in the posterior Sylvian region in families affected by developmental language disorder. Neuropsychology Review, 6, 8194.Google Scholar
Kanwisher N., Downing P., Epstein R., & Kortzi Z. 2001. Functional neuroimaging of visual recognition. In R. Cabeza & K. A. (Eds.), Handbook of functional neuroimaging (pp. 109151). Cambridge, MA: MIT Press.
Lai C. S., Fisher S. E., Hurst J. A., Vargha–Khadem F., & Monaco A. P. 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413 (6855), 519523.Google Scholar
Lord C., & Paul R. 1997. Language and communication in autism. In D. J. Cohen & F. R. Volkmar (Eds.), Handbook of autism and pervasive developmental disorders (pp. 195225). New York: Wiley.
Marcus G. F., & Fisher S. E. 2003. FOXP2 in focus: What can genes tell us about speech and language? Trends in Cognitive Science, 7, 257262.Google Scholar
Mesulam M.-M. 1998. From sensation to cognition. Brain, 121, 10131052.Google Scholar
Morris C. A. 2004. Genotype–phenotype correlations: Lessons from Williams syndrome research. In M. Rice & S. Warren (Eds.), Developmental language disorders: From phenotypes to etiolo- gies (pp. 355369). Mahwah, NJ: Erlbaum.
Müller R.-A. 2004. Genes, language disorders, and developmental archaeology: What role can neuroimaging play? In M. Rice & S. Warren (Eds.), Developmental language disorders: From phenotypes to etiologies (pp. 291328). Mahwah, NJ: Erlbaum.
Müller R.-A., & Basho S. 2004. Are nonlinguistic functions in “Broca's area” prerequisites for language acquisition? fMRI findings from an ontogenetic viewpoint. Brain and Language, 89, 329336.Google Scholar
Müller R.-A., Kleinhans N., Kemmotsu N., Pierce K., & Courchesne E. 2003. Abnormal variability and distribution of functional maps in autism: An fMRI study of visuomotor learning. American Journal of Psychiatry, 160, 18471862.Google Scholar
Nelson K. B., Grether J. K., Croen L. A., Dambrosia J. M., Dickens B. F., Jelliffe L. L., Hansen R. L., & Phillips T. M. 2001. Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Annals of Neurology, 49, 597606.Google Scholar
Newmeyer F. J. 1998. Language form and language function. Cambridge, MA: MIT Press.
Osterling J. A., Dawson G., & Munson J. A. 2002. Early recognition of 1-year-old infants with autism spectrum disorder versus mental retardation. Development and Psychopathology, 14, 239251.Google Scholar
Phillips C. 2005. Electrophysiology in the study of developmental language impairments: Prospects and challenges for a top-down approach. Applied Psycholinguistics, 26, 7996.Google Scholar
Pinker S. 1999 Words and rules. New York: Basic Books.
Plante E., Swisher L., Vance R., & Rapcsak S. 1991. MRI findings in boys with specific language impairment. Brain and Language, 41, 5266.Google Scholar
Price C. J., & Friston K. J. 1997. Cognitive conjunction: A new approach to brain activation experiments. Neuroimage, 5, 261270.Google Scholar
Rapin I., & Dunn M. 2003. Update on the language disorders of individuals on the autistic spectrum. Brain and Development, 25, 166172.Google Scholar
Rice M. L. 2004. Growth models of developmental language disorders. In M. Rice & S. Warren (Eds.), Developmental language disorders: From phenotypes to etiologies (pp. 207240). Mahwah, NJ: Erlbaum.
Rizzolatti G., Fogassi L., & Gallese V. 2002. Motor and cognitive functions of the ventral premotor cortex. Current Opinion in Neurobiology, 12, 149154.Google Scholar
Rogers S. J., Hepburn S. L., Stackhouse T., & Wehner E. 2003. Imitation performance in toddlers with autism and those with other developmental disorders. Journal of Child Psychology and Psychiatry, 44, 763781.Google Scholar
Schlaug G., Jänicke L., Huang Y., & Steinmetz H. 1995. In vivo evidence of structural brain asymmetry in musicians. Science, 267, 699701.Google Scholar
Scriver C. R. 2002. Why mutation analysis does not always predict clinical consequences: Explanations in the era of genomics. Journal of Pediatrics, 140, 502506.Google Scholar
Scriver C. R., & Waters P. J. 1999. Monogenic traits are not simple: lessons from phenylketonuria. Trends in Genetics, 15, 267272.Google Scholar
Tager–Flusberg H. 1981. On the nature of linguistic functioning in early infantile autism. Journal of Autism and Developmental Disorders, 11, 4556.Google Scholar
Tager–Flusberg H. 2004. Do autism and specific language impairment represent overlapping language disorders? In M. Rice & S. Warren (Eds.), Developmental language disorders: From phenotypes to etiologies (pp. 3152). Mahwah, NJ: Erlbaum.
Tager–Flusberg H., & Joseph R. M. 2003 Identifying neurocognitive phenotypes in autism. Philosophical Transactions of the Royal Society of London B Biological Sciences, 358 (1430), 303314.Google Scholar
Tallal P., Galaburda A. M., & Llinás R. R. (Eds.). 1993 Temporal information processing in the nervous system (Vol. 682). New York: New York Academy of Sciences.
Tomasello M. 2000. Do young children have adult syntactic competence? Cognition, 74, 209253.Google Scholar
Watkins K. E., Dronkers N. F., & Vargha–Khadem F. 2002. Behavioural analysis of an inherited speech and language disorder. Comparison with acquired aphasia. Brain, 125, 452464.Google Scholar
Weckerly J., Wulfeck B., & Reilly J. 2004. The development of morphosyntactic ability in atypical populations: The acquisition of tag questions in children with early focal lesions and children with specific language impairment. Brain and Language, 88, 190201.Google Scholar
Williams J. H., Whiten A., Suddendorf T., & Perrett D. I. 2001. Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25, 287295.Google Scholar
Zukowski A. 2004. Investigating knowledge of complex syntax: Insights from experimental studies of Williams syndrome. In M. Rice & S. Warren (Eds.), Developmental language disorders: From phenotypes to etiologies (pp. 99119). Mahwah, NJ: Erlbaum.