No CrossRef data available.
Article contents
A STUDY ON THE ERROR OF DISTRIBUTED ALGORITHMS FOR BIG DATA CLASSIFICATION WITH SVM
Published online by Cambridge University Press: 07 March 2017
Abstract
The error of a distributed algorithm for big data classification with a support vector machine (SVM) is analysed in this paper. First, the given big data sets are divided into small subsets, on which the classical SVM with Gaussian kernels is used. Then, the classification error of the SVM for each subset is analysed based on the Tsybakov exponent, geometric noise, and width of the Gaussian kernels. Finally, the whole error of the distributed algorithm is estimated in terms of the error of each subset.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2017 Australian Mathematical Society