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Abstract

The error of a distributed algorithm for big data classification with a support vector
machine (SVM) is analysed in this paper. First, the given big data sets are divided
into small subsets, on which the classical SVM with Gaussian kernels is used. Then,
the classification error of the SVM for each subset is analysed based on the Tsybakov
exponent, geometric noise, and width of the Gaussian kernels. Finally, the whole error
of the distributed algorithm is estimated in terms of the error of each subset.
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1. Introduction

Steinwart and Scovel [7] studied the classification error of support vector machines
(SVMEs) based on the Tsybakov exponent, geometric noise, the varying regularization
parameter, and Gaussian kernels. We discuss the classification error of a distributed
algorithm for big data under their framework. For convenience, we first introduce
some concepts and notation (see [3, 7, 8] for details).

Let X c R? be the input space. To represent the two classes, the output space is
written as Y = {—1, 1}. Clearly, classification algorithms produce binary classifiers,
such as C: X — Y, the prediction power of which can be measured with its
classification error defined by

R(C) = PC(x) % y) = fX Py # C(I) dpx,

where p is a probability distribution on Z = X X Y, and p, is the marginal distribution
of p on X. The so-called Bayes rule [3] is the classifier minimizing R(C), and is given
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by
1 ifp(y = 1x) 2 p(y = =1|x),
—1 otherwise.

So the excess classification error, R(C) — R(f.) of a classifier C can be used to measure
the performance of the classifier C. We consider classifiers C; induced by a real-
valued function f : X — R, which is defined by C; = sign(f)(x), where sign(f) is the
sign function.

Xiang and Zhou [8] and Cucker and Zhou [3] presented a general convex loss
function. In this paper, we consider an SVM using hinge loss ¢ [7], defined by
() = (1 — )y =max{0, 1 —¢}. In the literature [2, 3], the Tikhonov regularization
scheme with loss ¢, Gaussian kernel K” and a training sample 7' = {(x;, y;))}!_ | € Z" is
defined as the solution of the following minimization problem:

A I v
fra = arg min{ Z] i)+ A1 ) (L1)

where A > 0 is called the regularization parameter.

We define E(f) = fz {(yf(x))dp and f(f,/l = arg minfeq{rr{af(f) + /1||f||§{}. This
function is called a regular function, and was used by De Vito et al. [4]. We also
define

fi(x) = arg min fy (0N dpOlx) = arg min{C(OP(y = 11x) + E(=DP(y = ~1|0)}

for x € X, almost everywhere.
Barlett et al. [1] and Cucker and Zhou [3] proved that for any measurable f : X — R,
the inequality

R(sign(f) = R(f.) < E(f) = E'(fe) (1.2)

holds. Although the theoretical properties of (1.1) have been extensively investigated,
the computation of (1.1) is complicated for big data with size N.

In this work, we study the so-called distributed algorithm for big data. Recently,
more researchers have worked on to this approach; for instance, McDonald et al.
[6] used perceptron-based algorithms, while Kleiner et al. [5] applied a bootstrap
approach. The aim of this paper is to study the binary classification error of the
distributed algorithm with varying A and o, based on the Tsybakov noise exponent
[7] and geometric exponent [7] under an SVM.

We provide some preliminaries in Section 2. The main results and associated proofs
are presented in Section 3. Conclusions are presented in Section 4.

2. Preliminaries

We first describe the distributed algorithm [9, 10]. We assume that N samples
(x1,y1), - -, (xn,yn) are given, which are independently and identically distributed
(i.i.d.) according to the distribution p on Z = X X Y. Instead of solving (1.1) on all N
samples, we take the following three steps.
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(D Divide the set of samples {(xj, Y1), ..., (xn,yn)} randomly and evenly into m
disjoint subsets Sy, ...,S,, C Z, where each S; has n = N/m samples.
(II) Foreachi=1,2,...,m, compute the local estimates

fu=agmin Y a0 + A7, )

7 (X.y)ES;
(IIT) Take athe verage of the local estimates and output f = (1/m) 2y ﬁ/l

Our aim is to estimate the error R(sign(f)) — R(f.). However, using (1.2), we only
need to estimate E/(f) — E(£.). In Section 3, some results to bound E'( f) — EX(£.) and
R(sign(f)) — R(f.) will be presented. When solving each fl 1, we take A and o as in
Lemma 3.2.

First we present some concepts and lemmas (see [7] for details) on the Tsybakov
noise exponent ¢ and geometric noise exponent @ > 0 of the probability p. We denote
n(x) = p(y = 1|x) in the following.

Dermnition 2.1. Let 0 < g < oo and p be a probability measure on X X Y. We say that p

has Tsybakov noise exponent g, if there exists a constant C > 0 such that
px(xeX|2n(x) -1 <n<CH

for all sufficiently small ¢ > 0.

Dermirion 2.2. Let X ¢ R be compact and p be a probability measure on X x Y. We
say that p has geometric noise exponent « > 0, if there exists a constant C > 0 such
that

2

f 2n(x) - 1] exp(—T—tx)pX(dx) < 1P @.1)
X

for all # > 0, where 7, is the distance of x to the decision boundary. We say that p has
geometric noise exponent @ = oo, if it has geometric noise exponent &’ for all &’ > 0.

Given a reproducing kernel Hilbert space H over X, we define the approximation
error function [7] with respect to H and P by

ad) = inf {Afll + &) - E DL A2 0.
The following two lemmas [7] are important for obtaining our results in the next
section.

LemMa 2.3. Let o > 0, X be a closed unit ball in the Euclidean space R?, and a,(.)
be the approximation error function with respect to Hy(X). Furthermore, let p be a
distribution on X X Y that has geometric noise exponent 0 < @ < oo with constant C in
(2.1). Then there is a constant cq > 0 depending only on the dimension d such that, for
all 1> 0, we have

ay () < cg(d? A+ C4d)* gy,
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Lemmva 2.4. Let F be a set of bounded measurable functions on X. Using the above
notation, we define

G = {[EG:f () + A Sl 1= [EQLL ) + AFLG T f € F

Suppose that there are constants ¢ >0, 0 <a <1, § >0 and B > 0 with Epg2 <
c(Bpg)* + 6, and ||glle < B for all g € G. Furthermore, assume that the covering
number for B~'G satisfies the condition of Steinwart and Scovel [7]. Then

P(T € Z" | [E(fr) + A frlP1 = [E'(fL) + Alfr P < cpe(n,a, B c,6,x) > 1 — e,

where €(n,a, B, ¢, 6, x) is as in [7].

3. Main results
Lemma 3.1. We have

. 1 < A
EN-E(f)<— D E h-E 1.
S
Proor. The convexity of £ yields

m

i, _ l « A 1 A
&)= fz oy f e dp < fz — > (Ofuatndp=— fz Cofia(0) dp
i=1 i=1

n 4
[ A
=— > &,
m i=1
therefore, &(f) - E(£) < (1/m) T, E (fia) — E'(£)). :

Now in order to find a boundary for E(f) — E(f.), we only need to estimate
&N f,»,/l) — EX(f,) for each i. In fact, the results for each i are the same, because the
f,»,/l (i=1,2,...,m) are i.i.d. distributed, and share the same properties. To estimate
& f, 1) — EL(f.), we first consider E( fl D=8 f/f ) by taking the approach of Steinwart
and Scovel [7] and make some modifications.

Lemma 3.2. Let X be a closed unit ball in the Euclidean space RY and p be a
distribution on X X Y with Tsybakov noise exponent 0 < g < oo and geometric noise
exponent 0 < a < 0. Also, let us assume that for some 0 <y <2and0< p <2,

sup In N(By,, €, Ly(Tx)) < corle P
Tezn

holds for all e > 0, o # 1. Given 0 < ¢ < 1/5, we define
A, = n~Het D+ D/1Qa+ D2g+pg+H+4y(g+ D=0

o, = ;M@

Then for any € > 0, there is a constant C > 0 such that for all x > 1 and all n > 1, with
probability not less than 1 — 2e™*, we have

Sf(fi,/l,,) _ 85(]35) < Cx2p~(Galg+ )/ (Qa+D)2q+pg+4)+4y(q+1))(1/(1-0))+20(+e
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Proor. Iteratively using the result of Steinwart and Scovel [7, Lemma 7.2], we find a
constant C > 1 such that for Q = {1/2(a¢+ 1)} +4{ + ¢€,and all x > 1, n > 1, we have

P(lfiall Cx1 9 >1 -,

Let f;,, be the minimizer of (1/n) X1, €(yvif(x)) + AllfI}, on CxA®"D2By . Then

P(fia, = fia) 2 1-e™
By the result of Steinwart and Scovel [7, Proposition 6.8], we may choose B, a, ¢, 6
in Lemma 2.4 such that

B~ x/l,;Q, a~ /lgy/(cwl), c ~ x(q+2)/(q+1)ﬂr—lQ(q+2)/(q+1)’

§ ~ xatD/(g+D) ALaq—Q(q+2)(a+1)]/(a+1)(q+1)‘

Then simple calculations show that
e(n,a, B, c,d,x) < xz/lia/(a+1)]—[{2Q(a+1)—1}/2(a+1)]—[§~(2fv+1)(2q+pq+4)+4y(q+1)/2(a+1)(2q+pq+4)]‘
Now from Lemma 2.4, we have
Mallfia P+ E(fin,) - ()
< /ln”f(f,,,/l,,nz 4 Sf(fzi,,,/l,,) _ Sf(f;f) + Cwlx2/ll[1<1/(a+1)]—[{2Q(a+1)—1}/2(Ct+1)]—4§
< C’z/lﬁf/(“*') 4 Clez/dla/((ﬁ1)]—[{2Q(a+1)—1}/2(a+1)]—4§

bl

where the last inequality is due to Lemma 2.3.
Since P(fia, = fia,) = 1 — €™, we have

2 2 ~ ~ DI-[{2 D-1}/2(a+1)]-4

An”ﬁ,/l,,llz +8f(ﬁ,/l,,) _ 85(.}(‘5) < CZ/IZ/((H—I) + Clxz/lgl/(l“' )N=-1{20(a+1)~1}/2(a+1)]-4¢
with probability not less than 1 — 2¢™, which leads to

Sf(ﬁ‘,/ln) _ Se(f[f) < sz/lz/(aﬂ) + C'«IXZALQ/(O/H)]*[{ZQ(OZH)*1}/2(01+1)]*4,(.
Due to the definition of Q, we have
/l[a/(fHl)J—l[ZQ((H1)—11/2(a+1)J—4{ z/lla/(tl+1)J—4§—E—4{
n n
< n[—4a(q+1)/(2(1+1)(2q+pq+4)+4y(q+1)(1—5)]+20§+3e

and the assertion is obtained. O

Tueorem 3.3. Under the conditions of Lemma 3.2, with probability not less than
1 —e™ (for any y > 1), we have

Sf(f_') _ Sf(ﬂ) S C(y + ln(zm))Zn[—4ar(q+1)/(2(1+1)(2q+pq+4)+47(q+1)(1—{)]+20{+36.
Proor. First, from the definition of ff, we have

E'(fia) - E'(f) < E(fin) - E(FD,
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X

so from Lemma 3.2, with probability at least 1 — 2¢™, we have

Sf(ﬁ,ﬂn) _ Sf(fc) < Cx2n[—4a(q+1)/(2a+1)(2q+pq+4)+4y(q+1)(1—§)]+2O§’+5.

Hence, using Lemma 3.1, we get

P{af(f) _ Sl(fc) < CxZn[—4oz(q+1)/(2a+l)(2q+pq+4)+4y(q+l)(l—g’)]+20§+5}

1 © A
> P{E Z(Sg(ﬁ") _E(L) < Cx2n[—4a/(q+l)/(2(1+l)(2q+pq+4)+4y(q+l)(l—{)]+20_{+e}
P

m
> P{ﬂ(gé)(ﬁ,ﬂ) _ ac(fc) < Cx2n[74a(q+l)/(2a+l)(2q+pq+4)+4y(q+l)(lfg)]JrQO{Jre)}
i=1

>1-2me™.
Replacing x by y + In(2m), we obtain that
8[(]‘_‘) _ Sf(ﬂ) < C(y + ln(zm))2n[—4a(q+1)/(2(I+1)(2q+pq+4)+4}/(q+1)(1—4)]+20§+E
holds with probability at least 1 — ™. O
Considering (1.2), with the same calculation as in [7], we obtain the main result.

Tueorem 3.4. Let X be a closed unit ball in R, and P be a distribution on X X Y
with Tsybakov noise exponent q € [0, oo] and geometric noise exponent a € (0, co0). We

define
@D/ Qa+D) ifa < q+2
/ln = 2q
n—[2(a+1)(q+1)]/[2(1(q+2)+3q+4] otherwise,

and o, = /l,jl/(aﬂ)d. Then for all € > 0, there exists C > 0 such that for all y > 1, with

probability at least 1 — e, the algorithm satisfies

2
C(y + In(2m))2n-le/@a+Dl+e ifa<d ; ,
q

R(sign(f)) - R(fo) <

C(y + ln(zm))Zn—[2(11+ D(g+1)/{2a(g+2)+3q+4}]+e otherwise.

4. Conclusion

Problems in big data analysis have recently become a hot topic. In this paper, we
apply a distributed algorithm to big data classification. The classification error bound
is discussed, based on Tsybakov noise and geometrical noise exponents. We use a
Tikhonov regularization scheme with hinge loss to obtain estimators. Other schemes
(such as back-propagation network (BPN)) and general convex loss functions can also
be considered. In our work, we have taken the ordinary average of local estimators.
A weighted average may lead to a better boundary for classification error, an issue we
intend to address in future work.
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