Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T20:50:04.289Z Has data issue: false hasContentIssue false

Strong system equivalence (I)

Published online by Cambridge University Press:  17 February 2009

B. D. O. Anderson
Affiliation:
Department of Systems Engineering, Research School of Physical Sciences, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601.
W. A. Coppel
Affiliation:
Department of Mathematics, Research School of Physical Sciences, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601.
D. J. Cullen
Affiliation:
Department of Mathematics, Research School of Physical Sciences, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Strong system equivalence is defined for polynomial realizations of a rational matrix. It is shown that any polynomial realization is strongly system equivalent to a generalized state-space realization, and two generalized state-space realizations are strongly system equivalent if and only if they are constant system equivalent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Bosgra, O. H. and Van der Weiden, A. J. J., “Realizations in generalized state-space form for polynomial system matrices and the definitions of poles, zeros and decoupling zeros at infinity’, Internat. J. Control 33 (1981), 393411.CrossRefGoogle Scholar
[2]Conte, G. and Perdon, A., “Generalized state-space realizations of non-proper rational transfer functions’, Systems Control Lett. 1 (1982), 270276.CrossRefGoogle Scholar
[3]Coppel, W. A., “Matrices of rational functions’, Bull. Austral. Math. Soc. 11 (1974), 89113.CrossRefGoogle Scholar
[4]Coppel, W. A., “Some remarks on strict system equivalence’, Proc. 5th Internat. Symp. Math. Theory of Networks and Systems, Santa Monica (1981), 3334.Google Scholar
[5]Coppel, W. A. and Cullen, D. J., “Strong system equivalence (II)’, J. Austral Math. Soc. Ser. B 27 (1985), 223237.CrossRefGoogle Scholar
[6]Fuhrmann, P. A., “On Strict system equivalence and similarity’, Internat. J. Control 25 (1977), 510.CrossRefGoogle Scholar
[7]Gantmacher, F. R., The theory of matrices, Vols. 1 & II (Chelsea, New York, 1959).Google Scholar
[8]Hinrichsen, D. and Prätzel-Wolters, D., “Solution modules and system equivalence’, Internat. J. Control 32 (1980), 777802.CrossRefGoogle Scholar
[9]Kailath, T., Linear systems (Prentice-Hall, Englewood Cliffs, N. J., 1980).Google Scholar
[10]Pernebo, L., “Notes on strict system equivalence’, Internat. J. Control 25 (1977), 2138.CrossRefGoogle Scholar
[11]Rosenbrock, H. H., State-space and multivariable theory (Nelson, London, 1970).Google Scholar
[12]Rosenbrock, H. H., “The transformation of strict system equivalence’, Internat. J. Control 25 (1977), 1119.CrossRefGoogle Scholar
[13]Vardulakis, A. I. G. and Karcanias, N., “Classification of proper bases of rational vector spaces: minimal McMillan degree bases’, Internat. J. Control 38 (1983), 779809.CrossRefGoogle Scholar
[14]Verghese, G. C., “Infinite-frequency behavior in generalized dynamical systems’, Ph.D. Dissertation, Stanford University, 1978.CrossRefGoogle Scholar
[15]Verghese, G., “Comments on ‘Properties of the system matrix of a generalized state-space system’“, Internat. J. Control 31 (1980), 10071009.CrossRefGoogle Scholar
[16]Verghese, G. C. and Kailath, T., “Impulsive behavior in dynamical systems: Structure and significance’, Proc. 4th Internat. Symp. Math. Theory of Networks and Systems, Delft (1979), 162168.Google Scholar
[17]Vergbese, G. C. and Kailath, T., “Rational matrix structure’, IEEE Trans. Automat. Control AC-26 (1981), 434439.CrossRefGoogle Scholar
[18]Verghese, G. C., Lévy, B. C. and Kailath, T., “A generalized state-space for singular systems’, IEEE Trans. Automat. Control AC-26 (1981), 811831.CrossRefGoogle Scholar
[19]Verghese, G., Van Dooren, P. and Kailath, T., “Properties of the system matrix of a generalized state-space system’, Internat. J. Control 30 (1979), 235243.CrossRefGoogle Scholar