Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:38:16.842Z Has data issue: false hasContentIssue false

On an extension of generalized incomplete Gamma functions with applications

Published online by Cambridge University Press:  17 February 2009

M. Aslam Chaudhry
Affiliation:
Department of mathematical science
S. M. Zubair
Affiliation:
Dept.of Mech. Eng., King Fahd University of petroleum and Minerals, Dhahran, Saudi Arabia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we have introduced extensions νυ(α, x; b) and Γν(α, x; b) of the generalized Gamma functions γx; b) and Γ(α, x; b) considered recently by Chaudhry and Zubair. These extensions are found useful in the representations of the Laplace and K-transforms of a class of functions. We have also defined a generalization of the inverse Gaussian distribution. The cumulative and the reliability functions of the generalized inverse Gaussian distribution are expressed in terms of these functions. Some useful properties of the functions are also discussed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1] Abramowitz, M. et al. , “Handbook of Mathematical Functions”, Nat. Bur. Std., Appl. Math. Ser. 55, U.S. Govt. Printing Office, Washington, D.C., (1964).Google Scholar
[2] Amos, D. E., “Computation of modified Bessel functions and their ratios”, Math. Comp. 17 (1974) 239251.CrossRefGoogle Scholar
[3] Artin, E., The Gamma Function, (Holt, New York, 1964).Google Scholar
[4] Askey, R. A., “The q-Gamma and q-Beta functions”, Applic. Anal. 8 (1978) 125141.CrossRefGoogle Scholar
[5] Askey, R. A., “Ramanujan's extension of the Gamma and Beta functions”, Amer. Math. Monthly 87 (1980) 346”359.CrossRefGoogle Scholar
[6] Atkinson, A. C., “The simulation of generalized inverse Gaussian, generalized hyperbolic, gamma and related random variables”, Research Report No. 52 (Dept. Theor. Statist., Aarhus University, 1979).Google Scholar
[7] Banerjee, A. K. and Bhattacharyya, G. K., “Baysian results for the inverse Gaussian distribution with an application”, Technometrics 21 (1979) 247252.CrossRefGoogle Scholar
[8] Barndorff-Nielsen, O., “Exponentially decreasing log-size distributions”, Proc. R. Soc. London, A 353 (1977) 401419.Google Scholar
[9] Barndorff-Nielsen, O., Information and exponential families in statistical theory (Wiley, Chichester, 1978).Google Scholar
[10] Barndorff-Nielsen, O., “Hyperbolic distributions and distributions on hyperbolae”, Scand. J. Statist. 5 (1978) 151157.Google Scholar
[11] Barndorff-Nielsen, O., Blaesild, P. and Halgreen, C., “First hitting time models for the generalized inverse Gaussian distribution”, Stoc. Processes Appl. 7 (1978) 4954.CrossRefGoogle Scholar
[12] Barndorff-Nielsen, O. and Cox, D. R., “Edgeworth and saddle-point approximations with statistical applications”, J.R. Statist. Soc. B 41 (1979) 279312.Google Scholar
[13] Barndorff-Nielsen, O. and Halgreen, C., “Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions”, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 38 (1977) 309311.CrossRefGoogle Scholar
[14] Blaesild, P., “The shape of the generalized inverse Gaussian and hyperbolic distributions”, Research Report No. 37 (Dept. Theor. Statist., Aarhus University, 1978).Google Scholar
[15] Böhmer, P. E., Differenzengleichungen und bestimmte Integrate (K. F. Koehler, Leipzig, 1939).Google Scholar
[16] Budak, B. M. and Fomin, S. V., Multiple Integrals, Field Theory and Series, (Mir Publishers, 1978).Google Scholar
[17] Carlson, B. C., “A connection between elementary functions and higher transcendental functions”, SIAM J. Appl. Math. 17 (1969) 116148.CrossRefGoogle Scholar
[18] Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, (Oxford University Press, 1959).Google Scholar
[19] Chaudhry, M. Aslam and Ahmed, M., “On a probability function useful in size modeling”, Canadian Journal of Forest Research, 23 (8) (1993) 16791683.CrossRefGoogle Scholar
[20] Chaudhry, M. Aslam and Ahmed, M., “On a class of probability functions-A unified approach” (in progress).Google Scholar
[21] Chaudhry, M. Aslam and Zubair, S. M., “Analytic study of temperature solutions due to Gamma type moving point-heat sources”, International Journal of Heat and Mass Transfer, 36 (6) (1991) 16331637.CrossRefGoogle Scholar
[22] Chaudhry, M. Aslam and Zubair, S. M., “Generalized incomplete Gamma functions with applications”, Journal of Computational and Applied Mathematics (1993) (accepted for publication).Google Scholar
[23] Chhikara, R. S. and Folks, J. L., “The inverse Gaussian distribution as a lifetime model”, Technometrics 19 (1977) 461468.CrossRefGoogle Scholar
[24] Chhikara, R. S. and Folks, J. L., “The inverse Gaussian distribution and its statistical application-a review. (With discussion)”, J. R. Statist. Soc. B 40 (1978) 263289.Google Scholar
[25] Cody, W. J., “Algorithm 597: A sequence of modified Bessel functions of the first kind”, ACM Transactions on Mathematical Software 9 (1983) 242245.CrossRefGoogle Scholar
[26] Cox, D. R. and Lewis, P. A. W., The statistical analysis of series of events (Methuen, London, 1966).CrossRefGoogle Scholar
[27] Erdélyi, A. et al. , Higher Transcendental Functions, Volume 2, (McGraw-Hill, New York, 1953).Google Scholar
[28] Erdélyi, A. et al. , Tables of Integral Transforms, Volume 1, (McGraw-Hill, New York, 1954).Google Scholar
[29] Erdélyi, A. et al. , Tables of Integral Transforms, Volume 2, (McGraw-Hill, New York, 1954).Google Scholar
[30] Feller, W., An Introduction to Probability Theory and Its Applications, Volume 1, third ed. (1968); Volume 2, second ed. (1971) (Wiley, New York).Google Scholar
[31] Fisher, R. A., Statistical methods and scientific inference (Oliver and Boyd, Edinburgh, 1956).Google Scholar
[32] Gautschi, W., “A computational procedure for the incomplete Gamma function”, ACM Transactions on Mathematical Software 5 (1979) 466481.CrossRefGoogle Scholar
[33] Good, I. J., “The population frequencies of species and the estimation of population parameters”, Biometrika 40 (1953) 237–60.CrossRefGoogle Scholar
[34] Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series, and Products (Academic Press, New York, 1980).Google Scholar
[35] Grigull, U. and Sandner, H., Heat Conduction, English Translation (ed. Kestin, J. K.) (Springer-Verlag, Berlin, 1984).CrossRefGoogle Scholar
[36] Halgreen, C., “Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions”, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 47 (1979) 1318.CrossRefGoogle Scholar
[37] Hochstadt, H., The Functions of Mathematical Physics (Wiley, New York, 1971).Google Scholar
[38] Hoem, J. N., “The statistical theory of demographic rates. A review of current developments. (With discussion)”, Scand. J. Statist. 3 (1976) 169185.Google Scholar
[39] IMSL MATH/LIBRARY Volume 2 (IMSL Inc., Houston, 1991).Google Scholar
[40] Ismail, M. E. H., “Integral representations and complete monotonicity of various quotients of Bessel functions”, Can. J. Math. 24 (1977) 11981207.CrossRefGoogle Scholar
[41] Ismail, M. E. H. and Muldoon, M. E., “Monotonicity of the zeros of a cross-product of Bessel functions”, Siam. J. Math. Anal. 9 (1978) 759767.CrossRefGoogle Scholar
[42] Jeffreys, H. and Jeffreys, B. S., Methods of Mathematical Physics, third ed. (Cambridge University Press, London, 1956).Google Scholar
[43] Johnson, N. L. and Kotz, S., Distributions in statistics: continuous univariate distributions I (Houghton-Mifflin, Boston, 1970).Google Scholar
[44] Jorgensen, B., Statistical Properties of Generalized Inverse Gaussian Distributions, Lecture Notes in Statistics, Volume 9 (Springer-Verlag, New York, 1982).CrossRefGoogle Scholar
[45] Jorgensen, B. and Pedersen, B. V., “Contribution to the discussion of O. Barndorff-Nielsen and D. R. Cox: Edgeworth and saddle-point approximations with statistical applications”, J. R. Statist. Soc. B 41 (1979) 309310.Google Scholar
[46] Keyfitz, N., Introduction to the mathematics of population (Addison-Wesley, Reading, 1968).Google Scholar
[47] Lebedev, N. N., Special Functions and Their Applications, English Translation (ed. Silverman, R. A.) (Prentice-Hall, New York, 1965).CrossRefGoogle Scholar
[48] Legendre, A. M., Exercises de calcul intégral (Paris, 1811).Google Scholar
[49] Legendre, A. M., “Mémoire sur les integrations par arcs d'ellipse.”, Histoire Acad. Roy. Sci. Avec. Mém. Math. Phys. (1786) 616643.Google Scholar
[50] Lombard, F., “A sequential test for the mean of an inverse Gaussian distribution”, South African Statist. J. 12 (1978) 107115.Google Scholar
[51] Magnus, W., Oberhettinger, F., and Soni, R. P., Formulas and Theorems for Special Functions of Mathematical Physics, third ed. (Springer-Verlag, New York, 1966).CrossRefGoogle Scholar
[52] Mikhlin, S. G., Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology (Pergamon Press, London, 1957).Google Scholar
[53] Mura, C. K., “Tests for the mean of the inverse Gaussian distribution”, Scand. J. Statist. 5 (1978) 200204.Google Scholar
[54] Nadas, A., “Best tests for zero drift based on first passage times in Brownian motion”, Technometrics 15 (1973) 125132.CrossRefGoogle Scholar
[55] Nielsen, N., Theorie des Integrallogarithmus und verwandter Transcendenten (B. G. Teubner, Leipzig, 1906).Google Scholar
[56] Nielsen, N., Handbuch der Theorie der Gammafunktion (B. G. Teubner, Leipzig, 1906).Google Scholar
[57] Nowacki, W., Thermoelasticity, second ed. (Pergamon Press, London, 1986).Google Scholar
[58] Padgett, W. J. and Wei, L. J., “Estimation for the three-parameter inverse Gaussian distribution”, Commun. Statist.-Theor. Meth. A 8 (1979) 129137.CrossRefGoogle Scholar
[59] Patil, S. A. and Kovner, J. L., “On the power of an optimum test for the mean of the inverse Gaussian distribution”, Technometrics 21 (1979) 379381.CrossRefGoogle Scholar
[60] Philip, J. R., “The function inv erf θ”, Austral. J. Phys. 13 (1960) 1320.CrossRefGoogle Scholar
[61] Piessens, R. E. et al. , QUAD-PACK (Springer-Verlag, New York, 1983).Google Scholar
[62] Roznowski, T., Moving Heat Sources in Thermoelasticity, English Translation (ed. Fenner, R. T.) (Wiley, New York, 1989).Google Scholar
[63] Rukhin, A. L., “Strongly symmetric families and statistical analysis of their parameters”, Zap. Naucvn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 43 (1974), English Translation J. Soviet Math. 9 (1978) 886910.Google Scholar
[64] Schrödinger, E., “Zur Theorie der fall-und Steigversuche an Teilchen mit Brownscher Bewegung”, Physikalische Zeitschrift 16 (1915) 289295.Google Scholar
[65] Seshadri, V. and Shuster, J. J., “Exact tests for zero drift based on first passage times in Brownian motion”, Technometrics 16 (1974) 133134.CrossRefGoogle Scholar
[66] Schuster, J. J., “On the inverse Gaussian distribution function”, J. Amer. Statist. Ass. 63 (1968) 15141516.CrossRefGoogle Scholar
[67] Sichel, H. S., “On a distribution representing sentence-length in written prose”, J. R. Statist. Soc. A 137 (1974) 2534.Google Scholar
[68] Sichel, H. S., “On a distribution law for word frequencies”, J. Amer. Statist. Ass. 70 (1975) 542547.Google Scholar
[69] Spain, B. and Smith, M. G., Functions of Mathematical Physics (Van Nostrand-Reinhold, Princeton, 1970).Google Scholar
[70] Sprott, D. A., “Normal likelihoods and their relation to large sample theory of estimation”, Biometrika 60 (1973) 457465.CrossRefGoogle Scholar
[71] Tweedie, M. C. K., “Statistical properties of inverse Gaussian distributions I”, Ann. Math. Statist. 28 (1957) 362377.CrossRefGoogle Scholar
[72] Whitmore, G. A. and Yalovsky, M., “A normalizing logarithmic transformation for inverse Gaussian random variables”, Technometrics 20 (1978) 207208.CrossRefGoogle Scholar
[73] Whitmore, G. A., “An inverse Gaussian model for labour turnover”, J. R. Statist. Soc. A 142 (1979) 468478.Google Scholar
[74] Wise, M. G., “Skew distributions in biomedicine including some with negative powers of time.” in Model building and Model selection Dordrecht Statistical Distributions in Scientific Work, Volume 2 (eds. Patil, G. P. et al. ) (Dordrecht, Reidel, 1975) 241262.Google Scholar
[75] Zubair, S. M. and Chaudhry, M. Aslam, “Temperature solutions due to continuously operating spherical-surface-heat sources in an infinite medium”, Intl. Communications in Heat and Mass Transfer 18 (1991) 805812.CrossRefGoogle Scholar
[76] Zubair, S. M. and Chaudhry, M. Aslam, “Heat conduction in a semi-infinite solid subject to time-dependent surface heat flux: an analytic study”, Wärme-und Stoffübertragung 28 (1993) 357364.CrossRefGoogle Scholar
[77] Zubair, S. M. and Chaudhry, M. Aslam, “Temperature solutions due to continuously operating, Gamma-type heat sources in an infinite medium”, ASME-HTD 207 (1992) 6368.Google Scholar