Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:41:23.308Z Has data issue: false hasContentIssue false

LARGE INTERVAL SOLUTION OF THE EMDEN–FOWLER EQUATION USING A MODIFIED ADOMIAN DECOMPOSITION METHOD WITH AN INTEGRATING FACTOR

Published online by Cambridge University Press:  15 December 2014

YINWEI LIN
Affiliation:
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan email [email protected], [email protected]
TZON-TZER LU*
Affiliation:
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan email [email protected], [email protected]
CHA’O-KUANG CHEN
Affiliation:
Department of Mechanical Engineering, National Cheng Kung University, Tainan 7010, Taiwan email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a new Adomian decomposition method (ADM) using an integrating factor for the Emden–Fowler equation. With this method, we are able to solve certain Emden–Fowler equations for which the traditional ADM fails. Numerical results obtained from testing our linear and nonlinear models are far more reliable and efficient than those from existing methods. We also present a complete error analysis and a convergence criterion for this method. One drawback of the traditional ADM is that the interval of convergence of the Adomian truncated series is very small. Some techniques, such as Pade approximants, can enlarge this interval, but they are too complicated. Here, we use a continuation technique to extend our method to a larger interval.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Society 

References

Bartolucci, D. and Montefusco, E., “Blow-up analysis, existence and qualitative properties of solutions for the two-dimensional Emden–Fowler equation with singular potential”, Math. Methods Appl. Sci. 30 (2007) 23092327; doi:10.1002/mma.887.CrossRefGoogle Scholar
Chowdhury, M. S. H. and Hashim, I., “Solutions of Emden–Fowler equations by homotopy-perturbation method”, Nonlinear Anal. Real World Appl. 10 (2009) 104115 ; doi:10.1016/j.nonrwa.2007.08.017.CrossRefGoogle Scholar
Duan, J. S. and Rach, R., “A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations”, Appl. Math. Comput. 218 (2011) 40904118; doi:10.1016/j.amc.2011.09.037.Google Scholar
El-Kalla, I. L., “Convergence of Adomian’s method applied to a class of Volterra type integro-differential equations”, Int. J. Differ. Equ. Appl. 10 (2005) 225234.Google Scholar
Erbe, L. and Chao, L. Z., “Qualitative behavior of a generalized Emden–Fowler differential system”, Czechoslovak Math. J. 41 (1991) 454466.CrossRefGoogle Scholar
Guo, C., Zhai, C. and Song, R., “An existence and uniqueness result for the singular Lane–Emden–Fowler equation”, Nonlinear Anal. 72 (2010) 12751279; doi:10.1016/j.na.2009.08.016.CrossRefGoogle Scholar
He, T. and Yang, F., “Existence of solutions to boundary value problems for the discrete generalized Emden–Fowler equation”, Discrete Dyn. Nat. Soc. 2009 (2009) 114 , Article ID 407623; doi:10.1155/2009/407623.CrossRefGoogle Scholar
Khuri, S. A., “A new approach to Bratu’s equation”, Appl. Math. Comput. 147 (2004) 131136; doi:10.1016/S0096-3003(02)00656-2.Google Scholar
Lefranc, M. and Mawhin, J., “Etude qualitative des solutions de l’équation diff’erentielle d’Emden–Fowler”, Acad. Roy. Belg. Bull. Cl. Sci. 55 (1969) 763770 ;http://adsabs.harvard.edu//abs/1969BARB...55..763L.Google Scholar
Lin, Y. W. and Chen, C. K., “A modified Adomian decomposition method for double singular boundary value problem”, Romanian J. Phys. 59 (2014) 443453 ;http://www.nipne.ro/rjp/2014_59_5-6/0443_0453.pdf.Google Scholar
Lin, Y. W., Lu, T. T. and Chen, C. K., “Adomian decomposition method using integrating factor”, Commun. Theor. Phys. 60 (2013) 159164; doi:10.1088/0253-6102/60/2/03.CrossRefGoogle Scholar
Lin, Y. W., Tang, H. W. and Chen, C. K., “Modified differential transform method for two singular boundary values problems”, J. Appl. Math. 2014 (2014) 16 , Article ID 138087; doi:10.1155/2014/138087.Google Scholar
Ou, C. H. and Wong, J. S. W., “On existence of oscillatory solutions of second order Emden–Fowler equations”, J. Math. Anal. Appl. 277 (2003) 670680; doi:10.1016/S0022-247X(02)00617-0.CrossRefGoogle Scholar
Tsai, P. Y. and Chen, C. K., “Application of the hybrid Laplace Adomian decomposition method to the nonlinear oscillatory systems”, J. Chin. Soc. Mech. Eng. 30 (2009) 493501.Google Scholar
Tsai, P. Y. and Chen, C. K., “An approximate analytic solution of the nonlinear Riccati differential equation”, J. Franklin Inst. 347 (2010) 18501862; doi:10.1016/j.jfranklin.2010.10.005.CrossRefGoogle Scholar
Wazwaz, A. M., “A new algorithm for calculating Adomian polynomials for nonlinear operators”, Appl. Math. Comput. 111 (2001) 3351; doi:10.1016/S0096-3003(99)00063-6.Google Scholar
Wazwaz, A. M., “A new algorithm for solving differential equations of Lane–Emden type”, Appl. Math. Comput. 118 (2001) 287310; doi:10.1016/S0096-3003(99)00223-4.Google Scholar
Wazwaz, A. M., “A new method for solving singular initial value problems in the second-order ordinary differential equations”, Appl. Math. Comput. 128 (2002) 4757 ; doi:10.1016/S0096-3003(01)00021-2.Google Scholar
Wazwaz, A. M., “Adomian decomposition method for a reliable treatment of the Emden–Fowler equation”, Appl. Math. Comput. 161 (2005) 543560; doi:10.1016/j.amc.2003.12.048.Google Scholar
Wong, J., “On existence of nonoscillatory solutions of sublinear Emden–Fowler equations”, Comm. Appl. Nonlinear Anal. 8 (2001) 1925.Google Scholar
Wu, G. C., “Challenge in the variational iteration method—a new approach to identification of the Lagrange multipliers”, J. King Saud University-Science 25 (2013) 175178 ; doi:10.1016/j.jksus.2012.12.002.CrossRefGoogle Scholar
Zeng, D. Q. and Qin, Y. M., “The Laplace–Adomian–Pade technique for the seepage flows with the Riemann–Liouville derivatives”, Commun. Frac. Calc. 3 (2012) 2629.Google Scholar