Article contents
Adaptive boundary-element methods for transmission problems
Published online by Cambridge University Press: 17 February 2009
Abstract
In this paper we present an adaptive boundary-element method for a transmission prob-lem for the Laplacian in a two-dimensional Lipschitz domain. We are concerned with an equivalent system of boundary-integral equations of the first kind (on the transmission boundary) involving weakly-singular, singular and hypersingular integral operators. For the h-version boundary-element (Galerkin) discretization we derive an a posteriori error estimate which guarantees a given bound for the error in the energy norm (up to a multiplicative constant). Then, following Eriksson and Johnson this yields an adaptive algorithm steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically good triangulations and are efficient.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1997
References
- 1
- Cited by