Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T08:24:13.581Z Has data issue: false hasContentIssue false

Adaptive boundary-element methods for transmission problems

Published online by Cambridge University Press:  17 February 2009

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we present an adaptive boundary-element method for a transmission prob-lem for the Laplacian in a two-dimensional Lipschitz domain. We are concerned with an equivalent system of boundary-integral equations of the first kind (on the transmission boundary) involving weakly-singular, singular and hypersingular integral operators. For the h-version boundary-element (Galerkin) discretization we derive an a posteriori error estimate which guarantees a given bound for the error in the energy norm (up to a multiplicative constant). Then, following Eriksson and Johnson this yields an adaptive algorithm steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically good triangulations and are efficient.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Babuška, I. and Miller, A., “A posteriori error estimates and adaptive techniques for the finite element method”, Tech. Note BN-968, (Univ. of Maryland, Institute for Physical Science and Technology, College Park, 1981.)Google Scholar
[2]Bergh, J. and Löfström, J., Interpolation spaces (Springer, Berlin, 1976).CrossRefGoogle Scholar
[3]Carstensen, C. and Stephan, E. P., “Adaptive boundary element methods for some first kind integral equations”, S1AM J. Numer. Anal. (1994), accepted for publication.Google Scholar
[4]Carstensen, C. and Stephan, E. P., “A posteriori error estimates for boundary element methods”, Math. Comp. 64 (1995) 483500.CrossRefGoogle Scholar
[5]Carstensen, C. and Stephan, E. P., “Adaptive coupling of boundary elements and finite elements”, Mathematical Modelling and Numerical Analysis 23 (1995) 779–;817.CrossRefGoogle Scholar
[6]Costabel, M., “Boundary integral operators on Lipschitz domains: Elementary results”, SIAM J. Numer. Anal. 19 (1988) 613–;626.CrossRefGoogle Scholar
[7]Costabel, M. and Stephan, E. P., “A direct boundary integral equation method for transmission problems”, J. Math. Anal. Appl. 106 (1985) 367413.CrossRefGoogle Scholar
[8]Costabel, M. and Stephan, E. P., “Integral equations for transmission problems in linear elasticity”, J. Integr. Eq. Appl. 2 (1990) 211223.Google Scholar
[9]Crouzeix, M. and Thomée, V., “The stability in Lp and of the L 2- projection onto finite element function spaces”, Math. Comp. 48 (1987) 521532.Google Scholar
[10]Eriksson, K. and Johnson, C., “An adaptive finite element method for linear elliptic problems”, Math. Comp. 50 (1988) 361383.CrossRefGoogle Scholar
[11]Eriksson, K. and Johnson, C., “Adaptive finite element methods for parabolic problems. I. A linear model problem”, SIAM J. Numer. Anal. 28 (1991) 4377.CrossRefGoogle Scholar
[12]Ervin, V., Heuer, N. and Stephan, E. P., “On the hp version of the boundary element method for Symm's integral equation on polygons”, Comput. Meth. Appl. Mech. Engin. 110 (1993) 2538.CrossRefGoogle Scholar
[13]Gaier, D., “Integralgleichungen erster Art und konforme Abbildung”, Math. Z. 147 (1976) 113129.CrossRefGoogle Scholar
[14]Johnson, C. and Hansbo, P., “Adaptive finite element methods in computational mechanics”, Comput. Meth. Appl. Mech. Engin. 101 (1992) 143181.CrossRefGoogle Scholar
[15]Lions, J. L. and Magenes, E., Non-homogeneous boundary value problems and applications, Vol. I (Springer, Berlin, 1972).Google Scholar
[16]Nedelec, J. C., “La méthode des élements finis a apliquée aux equations intégrales de la physique”, (First meeting AFCET-SMF on applied mathematics Palaiseau. Vol. 1, 181190, 1978.)Google Scholar
[17]Postell, F. V. and Stephan, E. P., ”On the h–, p– and hp versions of the boundary element method – numerical results”, Comput. Meth. Appl. Mech. Engin. 83 (1990) 6989.CrossRefGoogle Scholar
[18]Rank, E., “Adaptive boundary element methods”, in Boundary Elements 9, Vol. 1 (eds. Brebbia, C. A., Wendland, W. L. and Kunn, G.), (Springer, Heidelberg, 1987) 259273.Google Scholar
[19]Sloan, I. H. and Spence, A., “The Galerkin method for integral equations of the first kind with logarithmic kernel: Theory”, IMA J. Numer. Anal. 8 (1988) 105122.CrossRefGoogle Scholar