Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T13:51:46.437Z Has data issue: false hasContentIssue false

Early commensal interaction between humans and hares in Neolithic northern China

Published online by Cambridge University Press:  12 May 2020

Pengfei Sheng
Affiliation:
Institute of Archaeological Science, Fudan University, P.R. China Department of Cultural Heritage and Museology, Fudan University, P.R. China
Yaowu Hu
Affiliation:
Institute of Archaeological Science, Fudan University, P.R. China Department of Cultural Heritage and Museology, Fudan University, P.R. China
Zhouyong Sun
Affiliation:
Shaanxi Provincial Institute of Archaeology, Xi'an, P.R. China
Liping Yang
Affiliation:
Shaanxi Provincial Institute of Archaeology, Xi'an, P.R. China
Songmei Hu
Affiliation:
Shaanxi Provincial Institute of Archaeology, Xi'an, P.R. China
Benjamin T. Fuller
Affiliation:
Department of Archaeology and Heritage Studies, Aarhus University, Denmark
Xue Shang*
Affiliation:
Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing, P.R. China Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, P.R. China
*
*Author for correspondence: ✉ [email protected]

Abstract

Human influence on ecological niches can drive rapid changes in the diet, behaviour and evolutionary trajectories of small mammals. Archaeological evidence from the Late Neolithic Loess Plateau of northern China suggests that the expansion of millet cultivation created new selective pressures, attracting small mammals to fields and settlements. Here, the authors present direct evidence for commensal behaviour in desert hares (Lepus capensis), dating to c. 4900 years ago. Stable isotope ratio analysis of hare bones from the Neolithic site at Yangjiesha shows a diachronic increase in a C4 (millet-based) diet, revealing, for the first time, the expansion of ancient human-hare interactions beyond the predator-prey relationship.

Type
Research Article
Copyright
Copyright © Antiquity Publications Ltd, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, S.H. 1990. Preparation and characterization of bone and tooth collagen for stable carbon and nitrogen isotope analysis. Journal of Archaeological Science 17: 430–51. https://doi.org/10.1016/0305-4403(90)90007-RCrossRefGoogle Scholar
Aura, J.E., Jordá, J., Morales, J.V., Pérez, M., Villalba, M.P. & Alcover, J.H.. 2009. Economic transition in finis terra: the Western Mediterranean of Iberia, 15–7 ka BP. Before Farming 2: 255–65. https://doi.org/10.3828/bfarm.2009.2.4Google Scholar
Bao, Y.G., Zhou, X.Y., Liu, H.B., Hu, S.M., Zhao, K.L., Atahan, P., Dodson, J. & Li, X.Q.. 2018. Evolution of prehistoric dryland agriculture in the arid and semi-arid transition zone in northern China. PLoS ONE 13: e0198750. https://doi.org/10.1371/journal.pone.0198750CrossRefGoogle ScholarPubMed
Bartosiewicz, L., Kovács, Z.E. & Farkas, B.. 2013. Pass the skeleton key: animals in an Early Copper Age inhumation burial from Pusztataskony–Ledence I, Hungary, in Starnini, E. (ed.) Unconformist archaeology: papers in honour of Paolo Biagi: 7788. Oxford: Archaeopress.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–60. https://doi.org/10.1017/S0033822200033865CrossRefGoogle Scholar
Brown, T.A., Nelson, D.E., Vogel, J.S. & Southon, J.R.. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30: 171–77. https://doi.org/10.1017/S0033822200044118CrossRefGoogle Scholar
Cai, J.W. 2015. Study of radiocarbon dating and diet at the Shimao site, Shaanxi Province. Unpublished MA dissertation, Peking University, Beijing (in Chinese).Google Scholar
Chen, X.L., Hu, S.M., Hu, Y.W., Wang, W.L., Ma, Y.Y., , P. & Wang, C.S.. 2014. Raising practices of Neolithic livestock evidenced by stable isotope analysis in the Wei River Valley, north China. International Journal of Osteoarchaeology 26: 4252. https://doi.org/10.1002/oa.2393CrossRefGoogle Scholar
DeNiro, M. 1985. Post-mortem preservation of alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317: 806809. https://doi.org/10.1038/317806a0CrossRefGoogle Scholar
Dong, G.H., Zhang, S.J., Yang, Y.S., Chen, J.H. & Chen, F.H.. 2016. Agricultural intensification and its impact on environment during the Neolithic in northern China. Chinese Science Bulletin 61: 2913–25 (in Chinese). https://doi.org/10.1360/N972016-00547CrossRefGoogle Scholar
Fuller, D.Q. & Stevens, C.J.. 2017. Open for competition: domesticates, parasitic domesticoids and the agricultural niche. Archaeology International 20: 110–21. https://doi.org/10.5334/ai-359Google Scholar
Gu, F. 2005. The complete collection of unearthed jades in China: volume 14. Beijing: Science Press (in Chinese).Google Scholar
Guan, L., Hu, Y.W., Hu, S.M., Sun, Z.Y., Qin, Y. & Wang, C.S.. 2008. Stable isotopic analysis on animal bones from the Wuzhuangguoliang site, Jingbian, northern Shaanxi. Quaternary Sciences 6: 1160–65.Google Scholar
Hockett, B.S. & Haws, J.A.. 2002. Taphonomic and methodological perspectives of leporid hunting during the Upper Paleolithic of the Western Mediterranean Basin. Journal of Archaeological Method and Theory 9: 269302. https://doi.org/10.1023/A:1019503030246CrossRefGoogle Scholar
Hu, S.M., Sun, Z.Y., Yang, L.P., Kang, N.W., Yang, M.M. & Li, X.Q.. 2013. Research on faunal remains from the Yangjiesha site in Hengshan County, Shaanxi Province. Acta Anthropologica Sinica 32: 7792 (in Chinese).Google Scholar
Hu, Y. 2018. Thirty-four years of stable isotopic analyses of ancient skeletons in China: an overview, progress and prospects. Archaeometry 60: 144–56. https://doi.org/10.1111/arcm.12367CrossRefGoogle Scholar
Hu, Y.W., Hu, S.M., Wang, W.L., Wu, X.H., Marshall, F.B., Chen, X.L., Hou, L.L. & Wang, C.S.. 2014. Earliest evidence for commensal processes of cat domestication. Proceedings of the National Academy of Sciences of the USA 111: 116–20. https://doi.org/10.1073/pnas.1311439110CrossRefGoogle ScholarPubMed
The Institute of Archaeology, CASS. 1982. The jades from Yinxu. Beiing: Cultural Relics Press (in Chinese).Google Scholar
The Institute of Archaeology, CASS. 2003. Oracle bone found at Huanyuandongdi, Yinxu site. Kunming: Yunan People's Publishing House (in Chinese).Google Scholar
Jaang, L., Sun, Z.Y., Shao, J. & Li, M.. 2018. When peripheries were centres: a preliminary study of the Shimao-centred polity in the loess highland, China. Antiquity 92: 1008–22. https://doi.org/10.15184/aqy.2018.31CrossRefGoogle Scholar
Lee-Thorp, J.A. 2008. On isotopes and old bones. Archaeometry 50: 925–50. https://doi.org/10.1111/j.1475-4754.2008.00441.xCrossRefGoogle Scholar
Legge, B.J. 1876. The she king, or the book of ancient poetry. London: Trübner.Google Scholar
Li, G.L. & Wang, J.Q.. 2001. Ancient fine arts in Shaanxi Han relief in Suide. Xi'an: Shannxi People's Fine Arts Publishing House (in Chinese).Google Scholar
Liu, L., Zhou, X., Yu, Y. & Guo, Z.. 2011. Soil organic carbon isotopic evidence of natural vegetation in the Loess Plateau. Quaternary Sciences 31: 506–13 (in Chinese).Google Scholar
Liu, X.Y., Jones, M.K., Zhao, Z., Liu, G. & O'Connell, T.C.. 2012. The earliest evidence of millet as a staple crop: new light on Neolithic foodways in north China. American Journal of Physical Anthropology 149: 283–90. https://doi.org/10.1002/ajpa.22127CrossRefGoogle Scholar
Lloveras, L., Maroto, J., Soler, J., Thomas, R., Moreno-García, M., Nadal, J. & Soler, N.. 2016. The role of small prey in human subsistence strategies from early Upper Palaeolithic sites in Iberia: the rabbits from the Evolved Aurignacian level of Arbreda Cave. Journal of Quaternary Science 31: 458–71. https://doi.org/10.1002/jqs.2869CrossRefGoogle Scholar
Mannermaa, K. 2008. Birds and burials at Ajvide (Gotland, Sweden) and Zvejnieki (Latvia) about 8000–3900 BP. Journal of Anthropological Archaeology 27: 201–25. https://doi.org/10.1016/j.jaa.2008.01.001CrossRefGoogle Scholar
Reimer, P.J. et al. 2013. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55: 1923–45. https://doi.org/10.2458/azu_js_rc.55.16955CrossRefGoogle Scholar
Richards, M.P. & Hedges, R.E.M.. 1999. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic Coast of Europe. Journal of Archaeological Science 26: 717–22. https://doi.org/10.1006/jasc.1998.0387CrossRefGoogle Scholar
Shaanxi Institute of Archaeology Research. 2009. Bronzes from northern Shaanxi: volume IV. Chengdu: Bashu Publishing House (in Chinese).Google Scholar
Sheng, P.F., Shang, X., Sun, Z.Y., Yang, L.P., Guo, X.N. & Jones, M.K.. 2018. North-south patterning of millet agriculture on the Loess Plateau: Late Neolithic adaptations to water stress, NW China. The Holocene 28: 1554–63. https://doi.org/10.1177/0959683618782610CrossRefGoogle Scholar
Somerville, A.D., Sugiyama, N., Manzanilla, L.R. & Schoeninger, M.J.. 2017. Leporid management and specialized food production at Teotihuacan: stable isotope data from cottontail and jackrabbit bone collagen. Archaeological and Anthropological Sciences 9: 8397. https://doi.org/10.1007/s12520-016-0420-2CrossRefGoogle Scholar
Szpak, P., Metcalfe, J.Z. & MacDonald, R.A.. 2017. Best practices for calibrating and reporting stable isotope measurements in archaeology. Journal of Archaeological Science: Reports 13: 609–16. https://doi.org/10.1016/j.jasrep.2017.05.007Google Scholar
Turcotte, M.M., Araki, H., Karp, D.S., Poveda, K. & Whitehead, S.R.. 2017. The ecoevolutionary impacts of domestication and agricultural practices on wild species. Philosophical Transactions of the Royal Society B 372: 20160033. https://doi.org/10.1098/rstb.2016.0033CrossRefGoogle Scholar
Wang, T.T., Wei, D., Chang, X., Yu, Z.Y., Zhang, X.Y, Wang, C.S., Hu, Y.W. & Fuller, B.T.. 2017. Tianshanbeilu and the Isotopic Millet Road: reviewing the Late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe. National Science Review 6: 1024–39. https://doi.org/10.1093/nsr/nwx015CrossRefGoogle ScholarPubMed
Wang, X., Fuller, B.T., Zhang, P., Hu, S. & Shang, X.. 2018. Millet manuring as a driving force for the Late Neolithic agricultural expansion of north China. Scientific Reports 8: 5552. https://doi.org/10.1038/s41598-018-23315-4]CrossRefGoogle ScholarPubMed
Weissbrod, L., Marshall, F.B., Valla, F.R., Khalaily, H., Baroz, G., Auffray, J.C., Vigne, J.D. & Cuuchi, T.. 2017. Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15 000 y ago. Proceedings of the National Academy of Sciences of the USA 114: 4099–104. https://doi.org/10.1073/pnas.1619137114CrossRefGoogle Scholar
Wu, X.Z. & Drozdov, N.I.. 2016. Research on small mammals in zooarchaeology. Acta Anthropologica Sinica 35: 418–30 (in Chinese).Google Scholar
Yang, S.L., Ding, Z.L., Li, Y.Y., Wang, X., Jiang, W.Y. & Huang, X.F.. 2015. Warming-induced north-westward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the Mid-Holocene. Proceedings of the National Academy of Sciences of the USA 112: 13178–83. https://doi.org/10.1073/pnas.1504688112CrossRefGoogle Scholar
Zhang, S.Q., Zhang, Y., Li, J.S. & Gao, X.. 2016. The broad-spectrum adaptations of hominins in the later period of Late Pleistocene of China: perspectives from the zooarchaeological studies. Science China Earth Sciences 59: 1529–39. https://doi.org/10.1007/s11430-016-5287-7CrossRefGoogle Scholar
Zhao, Z.J. 2011. New archaeobotanic data for the study of the origins of agriculture in China. Current Anthropology 52: 295306. https://doi.org/10.1086/659308CrossRefGoogle Scholar
Supplementary material: PDF

Sheng et al. supplementary material

Sheng et al. supplementary material

Download Sheng et al. supplementary material(PDF)
PDF 273.1 KB