Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T14:56:05.418Z Has data issue: false hasContentIssue false

The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys

Published online by Cambridge University Press:  07 July 2014

Asunción De Los Ríos*
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo, Madrid 28006, Spain
Jacek Wierzchos
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo, Madrid 28006, Spain
Carmen Ascaso
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo, Madrid 28006, Spain

Abstract

We review the lithic microbial ecosystems of the McMurdo Dry Valleys as the main form of terrestrial colonization in this region, and assess the role of environmental controls such as temperature, solar radiation, water availability, wind, nutrient availability, salinity and the physicochemical properties of the colonized rock. Epilithic communities, especially those dominated by lichens, are able to withstand extreme environmental conditions but subsurface endolithic microhabitats provide more tolerant conditions. Endolithic microbial communities can be grouped into two main classes: eukaryotic communities (dominated by lichenized fungi and algae) and prokaryotic communities (dominated by cyanobacteria). Heterotrophic bacteria and non-lichenized algae and fungi (mainly black fungi) are also components of these communities. These lithobiontic microorganisms generally have effective mechanisms against freezing temperatures and desiccation. Extracellular polymeric substances play an important role not only in protecting microbial cells but also in community organization and in mitigating microenvironmental conditions. Antarctic lithobiontic communities are comprised of microbial consortia within which multiple interactions between the different biological and abiotic components are essential for microbial survival, whilst fossils and biomarkers provide evidence of earlier successful microbial life in Antarctic deserts. Finally, the uniqueness of the present lithobiont assemblages suggests they are the outcome of geographical isolation during the evolution of the continent and not merely the descendants of a subset of globally distributed taxa that have adapted to the extreme environmental conditions.

Type
Synthesis
Copyright
© Antarctic Science Ltd 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, R. & Bradwell, T. 2010. Growth of crustose lichens: a review. Geografisca Annaler - Physical Geography, 92A, 317.CrossRefGoogle Scholar
Ascaso, C., Sancho, L.G. & Rodriguez-Pascual, C. 1990. The weathering action of saxicolous lichens in maritime Antarctica. Polar Biology, 11, 3339.CrossRefGoogle Scholar
Ascaso, C. & Wierzchos, J. 2002. New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. International Microbiology, 5, 215222.Google Scholar
Ascaso, C. & Wierzchos, J. 2003. The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiology Journal, 20, 439450.CrossRefGoogle Scholar
Banerjee, M. & Verma, V. 2009. Nitrogen fixation in endolithic cyanobacterial communities of the McMurdo Dry Valley, Antarctica. Science Asia, 35, 215219.CrossRefGoogle Scholar
Banfield, J.F., Barker, W.W., Welch, S.A. & Taunton, A. 1999. Biological impact on mineral dissolution: application of the lichen model to understand mineral weathering in the rhizosphere. Proceedings of the National of Academic Sciences of the United States of America, 96, 34043411.CrossRefGoogle ScholarPubMed
Barker, W.W. & Banfield, J.F. 1996. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chemical Geology, 132, 5569.CrossRefGoogle Scholar
Barker, W.W., Welch, S.A., Chu, S. & Banfield, J.F. 1998. Experimental observations of the effects of bacteria on aluminiosilicate weathering. American Mineralogist, 83, 15511563.CrossRefGoogle Scholar
Barták, M., Hájek, J. & Očenášová, P. 2012. Photoinhibition of photosynthesis in Antarctic lichen Usnea antarctica. I. Light intensity- and light duration-dependent changes in functioning of photosystem II. Czech Polar Reports, 2, 4251.CrossRefGoogle Scholar
Barták, M., Vaczi, P., Hájek, J. & Smykla, J. 2007. Low temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans . Polar Biology, 31, 4751.CrossRefGoogle Scholar
Billi, D. 2009. Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles, 13, 4957.CrossRefGoogle ScholarPubMed
Billi, D. 2012. Anhydrobiotic rock-inhabiting cyanobacteria: potential for astrobiology and biotechnology. In Stan-Lotter, H. & Fendrihan, S., eds. Adaptation of microbial life to environmental extremes. New York, NY: Springer, 119132.CrossRefGoogle Scholar
Blackhurst, R., Genge, M.J., Kearsley, A.T. & Grady, M.M. 2005. Cryptoendolithic alteration of Antarctic sandstones: pioneers or opportunists? Journal of Geophysical Research - Planets, 110, 10.1029/2005JE002463.CrossRefGoogle Scholar
Block, W. 1994. Terrestrial ecosystems: Antarctica. Polar Biology, 14, 293300.CrossRefGoogle Scholar
Broady, P.A. 1981. The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia, 20, 259272.CrossRefGoogle Scholar
Büdel, B., Bendix, J., Bicker, F.R. & Green, T.G.A. 2008. Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. Journal of Phycology, 44, 14151424.CrossRefGoogle ScholarPubMed
Caldwell, M.M., Björn, L.O., Bornman, J.F., Flint, S.D., Kulandaivelu, G., Teramura, A.H. & Tevini, M. 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology - Biology, 46B, 4052.CrossRefGoogle Scholar
Castello, M. & Nimis, P.L. 1995. A critical revision of Antarctic lichens described by C.W. Dodge. Bibliotheca Lichenologica, 57, 7192.Google Scholar
Castello, M. 2010. Notes on the lichen genus Rhizoplaca from continental Antarctica and on some other species from northern Victoria Land. Lichenologist, 42, 429437.CrossRefGoogle Scholar
Chan, Y.K., Lacap, D.C., Lau, M.C.Y., Ha, K.Y., Warren-Rhodes, K.A., Cockell, C.S., Cowan, D.A., McKay, C.P. & Pointing, S.B. 2012. Hypolithic microbial communities: between a rock and a hard place. Environmental Microbiology, 14, 22722282.CrossRefGoogle Scholar
Chan, Y., van Nostrand, J.D., Zhou, J., Pointing, S.B. & Farrell, R.L. 2013. Functional ecology of an Antarctic dry valley. Proceedings of the National Academy of Sciences of the USA, 110, 89908995.CrossRefGoogle ScholarPubMed
Chapin, F.S., Walker, B.H., Hobbs, R.J., Hooper, DU., Lawton, J.H., Sala, O.E. & Tilman, D. 1997. Biotic control over the functioning of ecosystems. Science, 277, 500504.CrossRefGoogle Scholar
Convey, P. 2011. Antarctic terrestrial biodiversity in a changing world. Polar Biology, 34, 16291641.CrossRefGoogle Scholar
Convey, P. & Stevens, M.I. 2007. Antarctic biodiversity. Science, 317, 18771878.CrossRefGoogle ScholarPubMed
Convey, P., Gibson, J.A.E., Hillenbrand, C.D., Hodgson, D.A., Pugh, P.J.A., Smellie, J. & Stevens, M.I. 2008. Antarctic terrestrial life–challenging the history of the frozen continent? Biological Reviews, 83, 103117.CrossRefGoogle ScholarPubMed
Cowan, D.A. 2009. Cryptic microbial communities in Antarctic deserts. Proceedings of the National Academy of Sciences of the United States of America, 106, 19 74919 750.CrossRefGoogle ScholarPubMed
Cowan, D.A. & Tow, L.A. 2004. Endangered Antarctic environments. Annual Review of Microbiology, 58, 649690.CrossRefGoogle ScholarPubMed
Cowan, D.A., Khan, N., Pointing, S.B. & Cary, S.C. 2010. Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22, 714720.CrossRefGoogle Scholar
Cowan, D.A., Pointing, S.B., Stevens, M.I., Cary, S.C., Stomeo, F. & Tuffin, I.M. 2011. Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biology, 34, 307311.CrossRefGoogle Scholar
Davey, M.E. & O’Toole, G.A. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847867.CrossRefGoogle ScholarPubMed
De la Torre, J.R., Goebel, B.M., Friedmann, E.I. & Pace, N.R. 2003. Microbial diversity of crytoendolithic commnunities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69, 38583867.CrossRefGoogle ScholarPubMed
De los Ríos, A., Wierzchos, J. & Ascaso, C. 2002. Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microbial Ecology, 43, 181188.Google ScholarPubMed
De los Rios, A., Grube, M., Sancho, L.G. & Ascaso, C. 2007. Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology, 59, 386395.CrossRefGoogle ScholarPubMed
De los Ríos, A., Wierzchos, J., Sancho, L.G. & Ascaso, C. 2003. Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environmental Microbiology, 5, 231237.CrossRefGoogle ScholarPubMed
De los Ríos, A., Wiezchos, J., Sancho, L.G. & Ascaso, C. 2004. Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiology Ecology, 50, 143152.Google ScholarPubMed
De los Ríos, A., Sancho, L.G., Grube, M., Wierzchos, J. & Ascaso, C. 2005b. Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytologist, 165, 181189.CrossRefGoogle ScholarPubMed
De los Ríos, A., Wierzchos, J., Sancho, L.G., Green, T.G.A. & Ascaso, C. 2005a. Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist, 37, 383395.CrossRefGoogle Scholar
De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., van der Gucht, K., Hodgson, D.A., Sabbe, K. & Vyverman, W. 2009. Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proceedings of the Royal Society - Biological Sciences, 276B, 35913599.CrossRefGoogle Scholar
Decho, A.W., Kawaguchi, T., Allison, M.A., Louchard, E.M., Reid, R.P., Stephens, F.C., Voss, K.J., Wheatcroft, R.A. & Taylor, B.B. 2003. Sediment properties influencing up-welling spectral reflectance signatures: the biofilm gel effect. Limnology and Oceanography, 48, 431443.CrossRefGoogle Scholar
Doran, P.T., Priscu, J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C.H., McKay, C.P., Parsons, A.N. 2002a. Antarctic climatic cooling terrestrial ecosystem response. Nature, 415, 517520.CrossRefGoogle ScholarPubMed
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T. & Lyons, W.B. 2002b. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. Journal of Geophysical Research - Atmospheres, 107, 10.1029/2001JD002045.CrossRefGoogle Scholar
Edwards, H.G.M., Wynn-Williams, D.D. & Villar, S.E.J. 2004. Biological modification of haematite in Antarctic cryptoendolithic communities. Journal of Raman Spectroscopy, 35, 470474.CrossRefGoogle Scholar
Finlay, B.J. 2002. Global dispersal of free-living microbial eukaryote species. Science, 296, 10611063.CrossRefGoogle ScholarPubMed
Franzmann., P.D. 1996. Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodiversity and Conservation, 5, 12951305.CrossRefGoogle Scholar
Friedmann, E.I. 1977. Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarctic Journal of the United States, 12(4), 2629.Google Scholar
Friedmann, E.I. 1978. Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarctic Journal of the United States, 13(4), 162163.Google Scholar
Friedmann, E.I. 1980. Endolithic microbial life in hot and cold desserts. Origins of life, 10, 223235.CrossRefGoogle Scholar
Friedmann, E.I. 1982. Endolithic microorganisms in the Antarctic cold desert. Science, 215, 10451053.CrossRefGoogle ScholarPubMed
Friedmann, E.I. 1986. The Antarctic cold desert and the search for traces of life on Mars. Advances in Space Research, 6, 265268.CrossRefGoogle ScholarPubMed
Friedmann, E.I. & Ocampo-Friedmann, R. 1976. Endolithic blue-green algae in dry valleys: primary producers in the Antarctic desert ecosystem. Science, 193, 12471249.CrossRefGoogle ScholarPubMed
Friedmann, E.I. & Ocampo-Friedmann, R. 1984. The Antarctic cryptoendolithic ecosystem: relevance to exobiology. Origins of Life and Evolution of the Biosphere, 14, 771776.CrossRefGoogle ScholarPubMed
Friedmann, E.I. 1993. Extreme environments, limits of adaptation and extinction. In Guerrero, R. & Pedrós-Alió, C., eds. Trends in microbial ecology. Barcelona: Spanish Microbiology Society, 912.Google Scholar
Friedmann, E.I., Hua, M. & Ocampo-Friedmann, R. 1988. Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung, 58, 251259.Google ScholarPubMed
Friedmann, E.I., McKay, C.P. & Nienow, J.A. 1987. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biology, 7, 273287.CrossRefGoogle ScholarPubMed
Friedmann, E.I. & Weed, R. 1987. Microbial trace-fossil formation, biogenous and abiotic weathering in the Antarctic cold desert. Science, 236, 703705.CrossRefGoogle ScholarPubMed
Friedmann, E.I. & Sun, H.J. 2005. Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: I. Hypothesis. Microbial Ecology, 49, 523527.CrossRefGoogle ScholarPubMed
Golubic, S., Friedmann, I. & Schneider, J. 1981. The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology, 51, 475478.Google Scholar
Green, T.G.A., Sancho, L.G., Türk, R., Seppelt, R.D. & Hogg, I.D. 2011a. High diversity of lichens at 84ºS, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biology, 34, 12111220.CrossRefGoogle Scholar
Green, T.G.A., Brabyn, L., Beard, C. & Sancho, L.G. 2011b. Extremely low lichen growth rates in Taylor Valley, Dry Valleys, continental Antarctica. Polar Biology, 35, 535541.CrossRefGoogle Scholar
Green, T.G.A., Sancho, L.G., Pintado, A. & Schroeter, B. 2011c. Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biology, 34, 16431656.CrossRefGoogle Scholar
Green, T.G.A., Schroeter, B. & Sancho, L.G. 2007. Plant life in Antarctica. In Pugnaire, F.I. & Valladares, F., eds. Functional plant ecology. Boca Ratón: CRC Press, 389434.CrossRefGoogle Scholar
Grilli Caiola, M., Billi, D. & Friedmann, E.I. 1996. Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). European Journal of Phycology, 31, 97105.CrossRefGoogle Scholar
Guglielmin, M., Cannone, N., Strini, A. & Lewkowicz, A.G. 2005. Biotic and abiotic processes on granite weathering landforms in a cryotic environment, Northern Victoria Land, Antarctica. Permafrost and Periglacial Processes, 16, 6985.CrossRefGoogle Scholar
Hertel, H. 1987. Progress and problems in taxonomy of Antarctic saxicolous lecideoid lichens. In Peveling, E., ed. Progress and problems in lichenology in the eighties. Berlin: J. Cramer, 219242.Google Scholar
Hertel, H. 1988. Problems in monographing Antarctic crustose lichens. Polarforschung, 58, 6576.Google Scholar
Hodgson, D.A., Convey, P., Verleyen, E., Vyverman, W., McInnes, S.J., Sands, C.J., Fernández-Carazo, R., Wilmotte, A., de Wever, A., Peeters, K., Tavernier, I. & Willems, A. 2010. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° South. Polar Science, 4, 197214.Google Scholar
Hopkins, D.W., Sparrow, A.D., Gregorich, E.G., Elberling, B., Novis, P., Fraser, F., Scrimgeour, C., Dennis, P.G., Meier-Augenstein, W. & Greenfield, L.G. 2009. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environmental Microbiology, 11, 597608.CrossRefGoogle ScholarPubMed
Hughes, K.A. 2006. Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga. Stichococcus bacillaris. Polar Biology, 29, 327336.CrossRefGoogle Scholar
Hughes, K.A., Lawley, B. & Newsham, K.K. 2003. Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Applied and Environmental Microbiology, 69, 14881491.CrossRefGoogle ScholarPubMed
Johnston, C.G. & Vestal, J.R. 1991. Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on earth? Applied and Environmental Microbiology, 57, 23082311.CrossRefGoogle ScholarPubMed
Johnston, C.G. & Vestal, J.R. 1989. Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities. Geomicrobiology Journal, 7, 137153.CrossRefGoogle ScholarPubMed
Johnston, C.G. & Vestal, J.R. 1993. Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microbial Ecology, 25, 305319.CrossRefGoogle ScholarPubMed
Kappen, L. 1993. Lichens in the Antarctic region. In Friedmann, E.I., ed. Antarctic microbiology. New York, NY: Wiley-Liss, 433490.Google Scholar
Kappen, L. 2004. The diversity of lichens in Antarctica, a review and comments. Bibliotheca Lichenologica, 88, 331343.Google Scholar
Kappen, L., Friedmann, E.I. & Garty, J. 1981. Ecophysiology of lichens in the dry valleys of southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora, 171, 216235.CrossRefGoogle Scholar
Kappen, L. & Redon, J. 1987. Photosynthesis and water relations of three maritine Antarctic lichen species. Flora, 179, 215229.CrossRefGoogle Scholar
Kappen, L., Schroeter, B., Green, T.G.A. & Seppelt, R.D. 1998. Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia, 113, 325331.CrossRefGoogle ScholarPubMed
Khan, N., Tuffin, M., Stafford, W., Cary, C., Lacap, D.C., Pointing, S.B. & Cowan, D. 2011. Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 34, 16571668.CrossRefGoogle Scholar
Kogej, T., Gorbushina, A.A. & Gunde-Cimerman, N. 2006. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma . Mycological Research, 110, 713724.CrossRefGoogle Scholar
Kranner, I., Beckett, R., Hochman, A. & Nash, T.H. 2008. Desiccation-tolerance in lichens: a review. Bryologist, 111, 576593.CrossRefGoogle Scholar
Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E. & Pfeifhofer, H.W. 2005. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences of the United States of America, 102, 31413146.CrossRefGoogle Scholar
Lange, O.L. 1965. Der CO2-gasweshsel von Flechten bei tiefen temperaturen. Planta, 64, 119.CrossRefGoogle Scholar
Madronich, S., McKenzie, R.L., Björn, L.O. & Caldwell, M.M. 1998. Changes in biologically active ultraviolet radiation reaching the earth’s surface. Journal of Photochemistry and Photobiology - Biology, 46B, 519.CrossRefGoogle Scholar
Matthes, U., Turner, S.J. & Larson, D.W. 2001. Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. International Journal of Plant Sciences, 162, 263270.CrossRefGoogle Scholar
McKay, C.P. & Friedmann, E.I. 1985. The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biology, 4, 1925.CrossRefGoogle ScholarPubMed
Modenesi, P., Piana, M., Giordani, P., Tafanelli, A. & Bartoli, A. 2000. Calcium oxalate and medullary architecture in Xanthomaculina convoluta . Lichenologist, 32, 505512.CrossRefGoogle Scholar
Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriological Reviews, 39, 144167.CrossRefGoogle ScholarPubMed
Namsaraev, Z., Mano, M.J., Fernández, R. & Wilmotte, A. 2010. Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Annals of Glaciology, 51, 171177.CrossRefGoogle Scholar
Nienow, J.A., McKay, C.P. & Friedmann, I.E. 1988. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microbial Ecology, 16, 271289.CrossRefGoogle ScholarPubMed
Nienow, J.A. & Friedmann, E.I. 1993. Terrestrial lithophytic (rock) communities. In Friedmann, E.I., ed. Antarctic microbiology. New York, NY: Wiley-Liss, 343412.Google Scholar
Nishiyama, T. 1977. Studies on evaporite minerals from Dry Valley, Victoria Land, Antarctica. Antarctic Record, 58, 171185.Google Scholar
Omelon, C.R. 2008. Endolithic microbial communities in polar desert habitats. Geomicrobiology Journal, 25, 404414.CrossRefGoogle Scholar
Omelon, C.R., Polllard, W. & Ferris, F.G. 2007. Inorganic species distribution and microbial diversity within high arctic cryptoendolithic habitats. Microbial Ecology, 54, 740752.CrossRefGoogle ScholarPubMed
Onofri, S., Seltimann, L., de Hoog, G.S., Grube, M., Barreca, D., Ruisi, S. & Zucconi, L. 2007a. Evolution and adaptation of fungi at boundaries of life. Advances in Space Research, 40, 16571664.CrossRefGoogle Scholar
Onofri, S., Zucconi, D., Selbmann, L., de Hoog, G.S., de los Ríos, A., Ruisi, S. & Grube, M. 2007b. Fungal associations at the cold edge of life. Extreme Habitats and Astrobiology, 11, 735757.CrossRefGoogle Scholar
Øvstedal, D.O & Smith, R.I.L. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press, 424 pp.Google Scholar
Øvstedal, D.O. & Smith, R.I.L. 2009. Further additions to the lichen flora of Antarctica and South Georgia. Nova Hedwigia, 88, 157168.CrossRefGoogle Scholar
Øvstedal, D.O. & Smith, R.I.L. 2011. Four additional lichens from the Antarctic and South Georgia, including a new Leciophysma species. Folia Cryptogamica Estonica, 48, 6568.Google Scholar
Pandey, K.D., Shukla, S.P., Shukla, P.N., Giri, D.D., Singh, J.S., Singh, P. & Kashyap, A.K. 2004. Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cellular and Molecular Biology, 50, 575584.Google ScholarPubMed
Pearce, D.A., Bridge, P.D., Hughes, K.A., Sattler, B., Psenner, R. & Russell, N.J. 2009. Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 69, 143157.CrossRefGoogle ScholarPubMed
Peat, H.J., Clarke, A. & Convey, P. 2007. Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 132146.CrossRefGoogle Scholar
Pérez-Ortega, S., Ortiz-Alvarez, R., Green, T.G.A. & de los Ríos, A. 2012. Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbial Ecology, 82, 429448.CrossRefGoogle ScholarPubMed
Pointing, S.B., Chan, Y.K., Lacap, D.C., Lau, M.C.Y., Jurgens, J.A. & Farrell, R.L. 2009. Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106, 19 96419 969.CrossRefGoogle ScholarPubMed
Pointing, S.B. & Belnap, J. 2012. Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10, 551562.CrossRefGoogle ScholarPubMed
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Ríos, A., Wierzchos, J., Horneck, G. & Sancho, L.G. 2011. Whole lichen thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa . Astrobiology, 11, 281292.CrossRefGoogle ScholarPubMed
Romeike, J., Friedl, T., Helms, G. & Ott, S. 2002. Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized Ascomycetes) along a transect of the Antarctic Peninsula. Molecular Biology and Evolution, 19, 12091217.CrossRefGoogle ScholarPubMed
Roszak, D.B. & Colwell, R.R. 1987. Survival strategies of bacteria in the natural environment. Microbiological Reviews, 51, 365379.CrossRefGoogle ScholarPubMed
Ruibal, C., Gueidan, C., Selbmann, L., Gorbushina, A.A., Crous, P.W., Groenewald, J.Z., Muggia, L., Grube, M., Isola, D., Schoch, C.L., Staley, J.T. & Lutzoni, F. 2009. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Studies in Mycology, 64, 123133.CrossRefGoogle ScholarPubMed
Ruisi, S., Barreca, D., Selbmann, L., Zucconi, L. & Onofri, S. 2007. Fungi in Antarctica. Reviews in Environmental Science and Biotechnology, 6, 127141.CrossRefGoogle Scholar
Ruprecht, U., Brunauer, G. & Printzen, C. 2012. Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological viewpoint. Lichenologist, 44, 661678.CrossRefGoogle Scholar
Ruprecht, U., Lumbsch., H.T., Brunauer, G., Green, T.G.A. & Türk, R. 2010. Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Science, 22, 727741.CrossRefGoogle Scholar
Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Ríos, A., Pintado, A., Wierzchos, J. & Schuster, M. 2007. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology, 7, 443454.Google Scholar
Sancho, L.G., Valladares, F., Schroeter, B. & Kappen, L. 2000. Ecophysiology of Antarctic versus temperate populations of a bipolar lichen: the key role of the photosynthetic partner. In Davison, W., Howard-Williams, C. & Broady, P., eds. Antarctic ecosystems: models for wider ecological understanding. Christchurch: New Zealand Natural Sciences, 190194.Google Scholar
Schopf, J.W. 1993. Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science, 260, 640646.CrossRefGoogle ScholarPubMed
Schroeter, B., Green, T.G.A., Kappen, L. & Seppelt, R.D. 1994. Carbon dioxide exchange at subzero temperatures: field measurements on Umbilicata aprina in Antarctica. Cryptogamic Botany, 4, 233241.Google Scholar
Schroeter, B., Green, T.G.A., Pannewitz, S., Schlensog, M. & Sancho, L.G. 2010. Fourteen degrees of latitude and a continent apart: comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarctic Science, 22, 681690.CrossRefGoogle Scholar
Schroeter, B., Green, T.G.A., Pannewitz, S., Schlensog, M. & Sancho, L.G. 2011. Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77ºS latitude, continental Antarctica. Polar Biology, 34, 1322.CrossRefGoogle Scholar
Selbmann, L., de Hoog, G.S., Mazzaglia, A., Friedmann, E.I. & Onofri, S. 2005. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology, 51, 132.Google Scholar
Selbmann, L., de Hoog, G.S., Zucconi, L., Isola, D., Ruisi, S., van den Ende, A.H.G.G., Ruibal, C., de Leo, F., Urzi, C. & Onofri, S. 2008. Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Studies in Mycology, 61, 120.CrossRefGoogle Scholar
Selbmann, L., Isola, D., Zucconi, L. & Onofri, S. 2011. Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biology, 115, 937944.CrossRefGoogle ScholarPubMed
Seppelt, R.D., Türk, R., Green, T.G.A., Moser, G., Pannewitz, S., Sancho, L.G. & Schroeter, B. 2010. Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarctic Science, 22, 691702.CrossRefGoogle Scholar
Shirkey, B., McMaster, N.J., Smith, S.C., Wright, D.J., Rodriguez, H., Jaruga, P., Birincioglu, M., Helm, R.F. & Potts, M. 2003. Genomic DNA of Nostoc commune (cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Research, 31, 29953005.CrossRefGoogle ScholarPubMed
Siebert, J. & Hirsch, P. 1988. Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo Dry Valleys (south Victoria Land). Polar Biology, 9, 3744.CrossRefGoogle ScholarPubMed
Siebert, J., Hirsch, P., Hoffmann, B., Gliesche, C.G., Peissl, K. & Jendrach, M. 1996. Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard range): diversity, properties and interactions. Biodiversity and Conservation, 5, 13371363.CrossRefGoogle Scholar
Singh, J., Dubey, A.K. & Singh, R.P. 2011. Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Reviews in Environmental Science and Biotechnology, 10, 6377.CrossRefGoogle Scholar
Sterflinger, K., Tesei, D. & Zakharova, K. 2012. Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecology, 5, 453462.CrossRefGoogle Scholar
Sun, H.J. & Friedmann, E.I. 1999. Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiology Journal, 16, 193202.Google Scholar
Tamaru, Y., Takani, Y., Yoshida, T. & Sakamoto, T. 2005. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc Commune . Applied and Environmental Microbiology, 71, 73277333.CrossRefGoogle ScholarPubMed
Tosi, S., Onofri, S., Brusoni, M., Zucconi, L. & Vishniac, H. 2005. Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biology, 28, 470482.CrossRefGoogle Scholar
Tschermak-Woess, E. & Friedmann, E.I. 1984. Hemichloris antarctica gen. et sp. nov. (Chlorococcales, Chlorophyta) a cryptoendolithic alga from Antarctica. Phycologia, 23, 443454.CrossRefGoogle ScholarPubMed
Vestal, J.R. 1988. Biomass of the cryptoendolithic microbiota from the Antarctic desert. Applied and Environmental Microbiology, 54, 957959.CrossRefGoogle ScholarPubMed
Villar, S.E.J., Edwards, H.G.M. & Seaward, M.R.D. 2005. Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst, 130, 730737.CrossRefGoogle ScholarPubMed
Vincent, W.F. 2007. Cold tolerance in cyanobacteria and life in the cryosphere. In Seckbach, J., ed. Algae and cyanobacteria in extreme environments. Heidelberg: Springer, 289304.Google Scholar
Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D.A., Willems, A., Peeters, K., van de Vijver, B., de Wever, A., Leliaert, F. & Sabbe, K. 2010. Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 4, 103113.CrossRefGoogle Scholar
Walker, J.J. & Pace, N.R. 2007. Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Applied and Environmental Microbiology, 73, 34973504.CrossRefGoogle ScholarPubMed
Westall, F. & Folk, R.L. 2003. Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Research, 126, 313330.CrossRefGoogle Scholar
Wierzchos, J. & Ascaso, C. 1994. Application of back-scattered electron imaging to the study of the lichen rock interface. Journal of Microscopy, 175, 5459.CrossRefGoogle Scholar
Wierzchos, J. & Ascaso, C. 1996. Morphological and chemical features of bioweathered granitic biotite induced by lichen activity. Clays and Clay Minerals, 44, 652657.CrossRefGoogle Scholar
Wierzchos, J. & Ascaso, C. 1998. Mineralogical transformation of bioweathered granitic biotite, studied by HRTEM: evidence for a new pathway in lichen activity. Clays and clay minerals, 46, 446452.CrossRefGoogle Scholar
Wierzchos, J. & Ascaso, C. 2001. Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica. Polar Biology, 24, 863868.CrossRefGoogle Scholar
Wierzchos, J. & Ascaso, C. 2002. Microbial fossil record of rocks from the Ross Desert Antarctica: implications in the search for past life in Mars. International Journal of Astrobiology, 1, 5159.CrossRefGoogle Scholar
Wierzchos, J., Sancho, L.G. & Ascaso, C. 2005. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environmental Microbiology, 7, 566575.CrossRefGoogle ScholarPubMed
Wierzchos, J., Ascaso, C., Sancho, L.G. & Green, A. 2003. Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks. Geomicrobiology Journal, 20, 1524.CrossRefGoogle Scholar
Wierzchos, J., de los Ríos, A., Sancho, L.G. & Ascaso, C. 2004. Viability of endolithic microorganisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. Journal of Microscopy, 216, 5761.CrossRefGoogle ScholarPubMed
Winkler, J.B., Kappen, L. & Schulz, F. 2000. Snow and ice as an important ecological factor for the cryptogams in the maritime Antarctic. In Davison, W., Howard-Williams, C. & Broady, P., eds. Antarctic ecosystems: models for wider ecological understanding. Christchurch: New Zealand Natural Sciences, 220224.Google Scholar
Wirtz, N., Lumbsch, T., Green, A., Türk, R., Pintado, A., Sancho, L.G. & Schroeter, B. 2003. Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytologist, 160, 177183.CrossRefGoogle ScholarPubMed
Wolfaardt, G.M., Lawrence, J.R. & Korber, D.R. 1999. Function of EPS. In Wingender, J., Neu, T.R. & Flemming, H.C., eds. Microbial extracellular polymeric substances. Berlin: Springer, 171200.CrossRefGoogle Scholar
Yergeau, E., Bokhorst, S., Huiskes, A.H.L., Boschker, H.T.S., Aerts, R. & Kowalchuk, G.A. 2007. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiology Ecology, 59, 436451.CrossRefGoogle ScholarPubMed