Measurements at Wolverine Glacier, Alaska, from 1968 to 1988 indicate unsteady increases of air temperature and precipitation since the early 1970s. These increases were due almost entirely to changes in winter. Variations in annual temperature and precipitation at Wolverine Glacier and at Seward, a nearby climatological station at sea level, correlate positively with global temperature variations and are in general agreement with the changes at high latitudes predicted by five recent general atmospheric circulation models forced by anticipated rises of CO2.
A consequence of the air temperature and precipitation increases at Wolverine Glacier was a change to a generally positive mass balance after 1976. Although these observations in the coastal maritime climate of Alaska run against the common, oversimplified notion that in a warming climate glaciers will melt, causing sea level to rise, they are logical and easily understood when the sensitivity of the glacier to the seasonal distribution of the changes is considered. The observed seasonal changes at Wolverine Glacier also are in agreement with global climate models. Snow precipitation and glacier accumulation increased, but at the same time warming affected only these those temperatures below about −5°C, and melting was not altered. The extent of this response is not well known, but the process may be taking place in other important glacierized regions.