A three-dimensional perfectly plastic ice-sheet model, developed for determining the surface elevations and the flow pattern of an ice sheet with given bottom topography and ice-margin positions, is applied to the reconstruction of the glacial ice covers of Greenland and the Canadian Arctic islands. In the northern regions, two different reconstructions have been performed with ice margins along the present 600 and 200 m sea-depth contours, respectively. In central Greenland, the ice margin is considered to be at the outermost ice-margin deposits on the coastal shelf to the west, and at the present 200 m sea-depth contour to the east.
The main conclusions to be drawn from the reconstructions are: (1). The flow pattern of the glacial ice cover of Greenland shows a great resemblance to the present one, the central ice divide being displaced less than 50 km from its present position and being no more than 200 m higher than today. (2). The main ice divide of the ice sheet covering the Canadian Arctic islands (the Innuitian ice sheet) was located over the highlands of eastern Ellesmere Island with local domes positioned over the present ice caps, indicating that even the deep ice of Wisconsin age in these ice caps is of local origin. This is also the case for the Devon Island ice cap. (3). Even in the not very likely case of a rather extensive glacial ice cover in north-west Greenland, the ice-flow pattern upstream of the Camp Century deep drill site would not have changed radically compared to the present flow pattern. Thus it is concluded that even advanced ice margins in late-Wisconsin time could at most have resulted in an elevation of the deposition site of the late-Wisconsin ice at Camp Century 600 m higher than at present. The consequences of this conclusion are discussed.