Published online by Cambridge University Press: 18 August 2016
The influence of a diet of either pasture or hay on the development of lactic acidosis in sheep was investigated using a grain challenge approach. Twenty-four Merino wethers with a mean live weight of 36·7 (s.e.3·6) kg were used; 12 were adapted to grass pasture and 12 to hay (lucerne and oaten hay, 60: 40) for 4 weeks before being given 1 kg of crushed barley via stomach tube. Six sheep in each group were also given virginiamycin (VM; 50 mg/kg barley) with the grain to test the efficacy of this antibiotic in controlling the bacteria responsible for the development of acidosis. Changes in volatile fatty acid (VFA), pH, lactate and bacterial count in the rumen and faecal pH and dry matter (DM) were measured for a 24-h period following administration of the barley. Daily intakes of hay were measured for a 10-day period following grain engorgement. Total ruminal VFA increased (P < 0·01) over time and tended (P = 0·08) to be higher in sheep adapted to hay than in those adapted to pasture (67·5 v. 59·8 mmol/l). The molar proportions of VFA changed (P < 0·01) over time in favour of propionate in both groups. Ruminal pH was higher (P < 0·001) in pasture-adapted sheep, but declined (P < 0·001) in both groups over time following the introduction of barley. This decline in pH was associated with increases in ruminal concentration of VFA in pasture-adapted sheep and VFA and lactate in hay-adapted sheep. The addition of VM resulted in a higher (P < 0·001) proportion of propionate and a trend towards higher (P = 0·24) faecal pH and DM content. Faecal pH and DM content declined (P < 0·001) over time and was lower for the pasture-adapted sheep. The introduction of either barley alone or barley with VM from both hay and pasture diets increased (P < 0·05) the viable counts of total bacteria, Streptococcus bovis and lactic acid bacteria. Bacterial isolates were purified and identified by complete sequencing of the 16S rRNA gene to determine the predominant bacteria during the overfeeding of grain. Isolates from medium selective for S. bovis were all identified as this species when VM was not given. VM had no effect on counts of viable bacteria, but inhibited the growth of S. bovis.
This study has shown that sheep given hay are more susceptible to lactic acidosis, the signs of which can be reduced by VM.